山西省同煤二中联盟体2025届数学高一下期末统考模拟试题含解析_第1页
山西省同煤二中联盟体2025届数学高一下期末统考模拟试题含解析_第2页
山西省同煤二中联盟体2025届数学高一下期末统考模拟试题含解析_第3页
山西省同煤二中联盟体2025届数学高一下期末统考模拟试题含解析_第4页
山西省同煤二中联盟体2025届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省同煤二中联盟体2025届数学高一下期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下面一段程序执行后的结果是()A.6 B.4 C.8 D.102.下列各角中,与角终边相同的角是()A. B. C. D.3.圆与圆的位置关系为()A.内切 B.相交 C.外切 D.相离4.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.25.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.126.不等式的解集为()A. B. C. D.7.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.8.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.9.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形10.已知数列{an}前n项和为Sn,且满足①数列{an}必为等比数列;②p=1时,S5=3132;③正确的个数有()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为______12.已知,向量的夹角为,则的最大值为_____.13.设满足不等式组,则的最小值为_____.14.已知为等差数列,,,,则______.15.已知1,,,,4成等比数列,则______.16.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.18.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.19.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.20.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.21.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据题中的程序语句,直接按照顺序结构的功能即可求出。【详解】由题意可得:,,,所以输出为6,故选A.【点睛】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。2、B【解析】

给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.3、B【解析】试题分析:两圆的圆心距为,半径分别为,,所以两圆相交.故选C.考点:圆与圆的位置关系.4、D【解析】

因为,所以由于与平行,得,解得.5、D【解析】

利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【点睛】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.6、A【解析】

因式分解求解即可.【详解】,解得.故选:A【点睛】本题主要考查了二次不等式的求解,属于基础题.7、C【解析】

在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.8、B【解析】

根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.9、B【解析】

利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.10、C【解析】

由数列的递推式和等比数列的定义可得数列{an}为首项为p【详解】Sn+an=2pn⩾2时,Sn-1+a相减可得2an-an-1=0,即有数列由①可得p=1时,S5|a|a5|+|由①可得am·a可得p=1故选:C.【点睛】本题考查数列的递推式的运用,以及等比数列的定义和通项公式、求和公式的运用,考查化简整理的运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据两角差的正弦公式,化简,解出的值,再平方,即可求解.【详解】由题意,可知,,平方可得则故答案为:【点睛】本题考查三角函数常用公式关系转换,属于基础题.12、【解析】

将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.13、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.14、【解析】

由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.15、2【解析】

因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【点睛】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.16、【解析】

由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【点睛】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.18、;方程所表示的曲线是以为圆心,为半径的圆.【解析】

设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【点睛】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.19、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【点睛】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.20、(1)证明见解析.(2)二面角的余弦值为.【解析】

(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【详解】(1)证明:作于点,连接,如下图所示:因为侧面底面ABCD,则底面ABCD,因为为正三角形,则,所以,即,又因为,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因为,所以,即为中点.由等腰三角形三线合一可知,在中,由等腰三角形三线合一可得,所以均为边长为2的等边三角形,取中点,连接,如下图所示:由题意可知,即为二面角的平面角,所以在中由余弦定理可得,即二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论