版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省新绛县第二中学数学高一下期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数()①AC∥平面BEF;②B、C、E、F四点可能共面;③若EF⊥CF,则平面ADEF⊥平面ABCD;④平面BCE与平面BEF可能垂直A.0 B.1 C.2 D.32.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.43.如图,正方体ABCD-A1B1C1D1的棱长为2,E是棱AB的中点,F是侧面AA1D1D内一点,若EF∥平面BB1D1D,则EF长度的范围为()A. B. C. D.4.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.5.若数列,若,则在下列数列中,可取遍数列前项值的数列为()A. B. C. D.6.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.7.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.8.已知,若,则等于()A. B.1 C.2 D.9.已知,那么()A. B. C. D.10.等差数列的前项和为,若,且,则()A.10 B.7 C.12 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.12.已知一组数据、、、、、,那么这组数据的平均数为__________.13.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101314.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________15.正项等比数列中,为数列的前n项和,,则的取值范围是____________.16.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,与的夹角为.(1)若,求;(2)若与垂直,求.18.已知函数的最大值是1,其图像经过点(1)求的解析式;(2)已知且求的值。19.已知定义在上的函数的图象如图所示(1)求函数的解析式;(2)写出函数的单调递增区间(3)设不相等的实数,,且,求的值.20.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π21.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据折叠前后线段、角的变化情况,由线面平行、面面垂直的判定定理和性质定理对各命题进行判断,即可得出答案.【详解】对①,在图②中,连接交于点,取中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故①正确;对②,如果B、C、E、F四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;对③,在梯形ADEF中,由平面几何知识易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,则平面ADEF平面ABCD,故③正确;对④,在图②中,延长AF至G,使得AF=FG,连接BG,EG,易得平面BCE平面ABF,BCEG四点共面.过F作FNBG于N,则FN平面BCE,若平面BCE平面BEF,则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.故选:C.【点睛】本题主要考查线面平行、线面垂直、面面垂直的判定定理和性质定理的应用,意在考查学生的直观想象能力和逻辑推理能力,属于中档题.2、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.3、C【解析】
过作,交于点,交于,根据线面垂直关系和勾股定理可知;由平面可证得面面平行关系,利用面面平行性质可证得为中点,从而得到最小值为重合,最大值为重合,计算可得结果.【详解】过作,交于点,交于,则底面平面,平面,平面平面,又平面平面又平面平面,平面为中点为中点,则为中点即在线段上,,则线段长度的取值范围为:本题正确选项:【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.4、C【解析】
设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【点睛】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.5、D【解析】
推导出是以6为周期的周期数列,从而是可取遍数列前6项值的数列.【详解】数列,,,,,,,,,是以6为周期的周期数列,是可取遍数列前6项值的数列.故选:D.【点睛】本题考查数列的周期性与三角函数知识的交会,考查基本运算求解能力,求解时注意函数与方程思想的应用.6、C【解析】
由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【点睛】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.7、A【解析】
用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.8、A【解析】
首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.9、C【解析】试题分析:由,得.故选B.考点:诱导公式.10、C【解析】
由等差数列的前项和公式解得,由,得,由此能求出的值。【详解】解:差数列的前n项和为,,,解得,解得,故选:C。【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.12、【解析】
利用平均数公式可求得结果.【详解】由题意可知,数据、、、、、的平均数为.故答案为:.【点睛】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.13、21.2【解析】
计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.14、【解析】
由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.15、【解析】
利用结合基本不等式求得的取值范围【详解】由题意知,,且,所以,当且仅当等号成立,所以.故答案为:【点睛】本题考查等比数列的前n项和及性质,利用性质结合基本不等式求最值是关键16、【解析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.18、(1)(2)【解析】本题(1)属于基础问题,根据题意首先可求得A,再将点M代入即可求得解析式;对于(2)可先将函数f(x)的解析式化简,再带入,利用两角差的余弦公式可求解;(1)依题意知A=1,又图像经过点M∴,再由得即因此;(2),且,;19、(1);(2);(3);【解析】
(1)根据函数的最值可得,周期可得,代入最高点的坐标可得,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用在内的解就是和,即可得到结果.【详解】(1)由函数的图象可得,又因为函数的周期,所以,因为函数的图象经过点,即,所以,即,所以.(2)由,可得,可得函数的单调递增区间为:,(3)因为,所以,又因为可得,所以或,解得或,、因为且,,所以.【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.20、(1)g(x)=sin【解析】
(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【详解】(1)f(x)==3(sin2xcos=3由题意得g(x)=sin[2(x+π化简得g(x)=sin(2x+π(2)∵π12可得π3∴-1当x=π6时,函数当x=π2时,函数g(x)有最小值【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 口罩生产供应协议2025年交货时间
- 2025年版权侵权处理协议
- 深度解析(2026)《GBT 39376-2020皮革 抽样 批样抽样数量》(2026年)深度解析
- 深度解析(2026)《GBT 39287-2020闭式膨胀罐》
- 安全排查面试题及答案
- 护理单招面试题及答案
- 深度解析(2026)《GBT 38055.1-2025越野叉车 安全使用要求 第1部分:伸缩臂式叉车》(2026年)深度解析
- 深度解析(2026)《GBT 34646-2017烧结金属膜过滤材料及元件》
- 深度解析(2026)《GBT 34383-2017半闭式压力机》
- 2026年委托代为绍兴市医疗保障研究会招聘劳务派遣工作人员的备考题库及参考答案详解1套
- 视光学基础(第3版)课件 第五章 视力和视力检查
- 2025年开通新三板的试题及答案
- 形势与政策(2025秋)超星学习通章节测试答案
- DB11∕T 493.3-2022 道路交通管理设施设置规范 第3部分:道路交通信号灯
- 第17课 辛亥革命与中华民国的建立(课件)-【中职专用】《中国历史》魅力课堂教学三件套(高教版2023•基础模块)
- 期末考试-公共财政概论-章节习题
- 广东省广州市番禺区祈福英语实验学校2020-2021学年八年级上学期期中数学试题
- 蜡疗操作评分标准
- 2023广东高职高考英语真题卷附答案解析
- 心理学导论学习通超星课后章节答案期末考试题库2023年
- 侦查学的重点
评论
0/150
提交评论