2023-2024学年河北省衡水市衡水中学高三最后一模数学试题含解析_第1页
2023-2024学年河北省衡水市衡水中学高三最后一模数学试题含解析_第2页
2023-2024学年河北省衡水市衡水中学高三最后一模数学试题含解析_第3页
2023-2024学年河北省衡水市衡水中学高三最后一模数学试题含解析_第4页
2023-2024学年河北省衡水市衡水中学高三最后一模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省衡水市衡水中学高三最后一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降2.已知满足,则()A. B. C. D.3.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.54.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.5.是虚数单位,则()A.1 B.2 C. D.6.已知函数若恒成立,则实数的取值范围是()A. B. C. D.7.若的内角满足,则的值为()A. B. C. D.8.下列函数中,值域为的偶函数是()A. B. C. D.9.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.10.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.11.函数的图象大致为()A. B.C. D.12.在中,角的对边分别为,若.则角的大小为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)14.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.15.四面体中,底面,,,则四面体的外接球的表面积为______16.若,i为虚数单位,则正实数的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.18.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.19.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.20.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.21.(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.22.(10分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.2、A【解析】

利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.3、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.4、B【解析】

由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.6、D【解析】

由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.7、A【解析】

由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.8、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.9、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.10、C【解析】

先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.11、A【解析】

根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.12、A【解析】

由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】

先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.14、【解析】

取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.15、【解析】

由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.【详解】解:如图,在四面体中,底面,,,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥的外接球的半径为1.其表面积为.故答案为:.【点睛】本题考查多面体外接球表面积的求法,补形是关键,属于中档题.16、【解析】

利用复数模的运算性质,即可得答案.【详解】由已知可得:,,解得.故答案为:.【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】

(1)要证明平面平面BDE,只需在平面内找一条直线垂直平面BDE即可;(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系,分别求出平面BEF的法向量,平面的法向量,算出即可.【详解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,设AC,BD交于O,取BE的中点G,连FG,OG,,,四边形OCFG是平行四边形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系∵BE与平面ABCD所成的角为,,,,,,.,设平面BEF的法向量为,,,设平面的法向量设二面角的大小为..【点睛】本题考查线面垂直证面面垂直、面面所成角的计算,考查学生的计算能力,解决此类问题最关键是准确写出点的坐标,是一道中档题.18、(1);(2)见解析【解析】

(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题19、(1),;(2)【解析】

(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,,(2)把直线的参数方程代入曲线,得,可知,,所以.【点睛】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.20、(1);(2).【解析】

(1)由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论