2024届湖北省孝感市数学高一下期末学业质量监测模拟试题含解析_第1页
2024届湖北省孝感市数学高一下期末学业质量监测模拟试题含解析_第2页
2024届湖北省孝感市数学高一下期末学业质量监测模拟试题含解析_第3页
2024届湖北省孝感市数学高一下期末学业质量监测模拟试题含解析_第4页
2024届湖北省孝感市数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省孝感市数学高一下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.2.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.243.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.4.若正项数列的前项和为,满足,则()A. B. C. D.5.已知不等式的解集为,则不等式的解集为()A. B.C. D.6.下列函数中,值域为的是()A. B. C. D.7.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π8.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.9.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球,2个白球,乙袋中有2个红球,3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A. B. C. D.10.已知向量,且,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若,则为______三角形.12.已知,则____.13.设为虚数单位,复数的模为______.14.已知函数,数列的通项公式是,当取得最小值时,_______________.15.数列中,已知,50为第________项.16.数列{}的前项和为,若,则{}的前2019项和____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.18.已知函数.(1)求函数的最小正周期;(2)求函数的单调递增区间.19.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.20.已知数列前n项和满足(1)求数列的通项公式;(2)求数列的前n项和.21.已知向量满足,,且向量与的夹角为.(1)求的值;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.2、D【解析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D3、A【解析】

根据题意可知的值,从而可求的值.【详解】因为,,则.故选A.【点睛】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.4、A【解析】

利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。5、B【解析】

首先根据题意得到,为方程的根,再解出的值带入不等式即可.【详解】有题知:,为方程的根.所以,解得.所以,解得:或.故选:B【点睛】本题主要考查二次不等式的求法,同时考查了学生的计算能力,属于简单题.6、B【解析】

依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.7、A【解析】

利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.8、D【解析】

由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,

则,

为平面的一个法向量.

∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.9、D【解析】

现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,由此能求出两球不同颜色的概率.【详解】甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,则两球不同颜色的概率为.故选.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于中档题.10、D【解析】

直接由平面向量的数量积公式,即可得到本题答案.【详解】设与的夹角为,由,,,所以.故选:D【点睛】本题主要考查平面向量的数量积公式.二、填空题:本大题共6小题,每小题5分,共30分。11、等腰或直角【解析】

根据正弦定理化简得到,得到,故或,得到答案.【详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【点睛】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.12、【解析】

由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.13、5【解析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.14、110【解析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.15、4【解析】

方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。16、1009【解析】

根据周期性,对2019项进行分类计算,可得结果。【详解】解:根据题意,的值以为循环周期,=1009故答案为:1009.【点睛】本题考查了周期性在数列中的应用,属于中档题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【点睛】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.18、(1);(2).【解析】

(1)利用三角恒等变换思想得出,利用周期公式可计算出函数的最小正周期;(2)解不等式,即可得出函数的单调递增区间.【详解】(1),所以,函数的最小正周期为;(2)令,可得,因此,函数的单调递增区间为.【点睛】本题考查正弦型函数周期和单调区间的求解,解题的关键在于利用三角函数解析式化简,考查计算能力,属于中等题.19、(1);(2).【解析】

(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【点睛】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数、平均数的计算原则,考查计算能力,属于基础题.20、(1)(2)【解析】

(1)利用当时,,当时,即可求解(2)由裂项相消求解即可【详解】(1)当时,,当时,.所以可得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论