




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年宁夏石嘴山一中高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△中,若,则△为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形2.若,,则与的夹角为()A. B. C. D.3.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.4.若一元二次不等式对一切实数都成立,则的取值范围是()A. B. C. D.5.方程的解所在的区间为()A. B.C. D.6.设函数的图象为,则下列结论正确的是()A.函数的最小正周期是B.图象关于直线对称C.图象可由函数的图象向左平移个单位长度得到D.函数在区间上是增函数7.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则8.等比数列的前项和为,若,则公比()A. B. C. D.9.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.10.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是等比数列,公比为,且,,则_________.12.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)13.不论k为何实数,直线通过一个定点,这个定点的坐标是______.14.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________15.函数的最小正周期是________.16.如图所示,梯形中,,于,,分别是,的中点,将四边形沿折起(不与平面重合),以下结论①面;②;③.则不论折至何位置都有_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求;(2)求向量与的夹角的余弦值.18.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.19.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?20.记为数列的前项和,且满足.(1)求数列的通项公式;(2)记,求满足等式的正整数的值.21.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.2、A【解析】
根据平面向量夹角公式可求得,结合的范围可求得结果.【详解】设与的夹角为,又故选:【点睛】本题考查平面向量夹角的求解问题,关键是熟练掌握两向量夹角公式,属于基础题.3、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.4、A【解析】
该不等式为一元二次不等式,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,从而可得关于参数的不等式组,解之可得结果.【详解】不等式为一元二次不等式,故,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,则,解不等式组,得.故本题正确答案为A.【点睛】本题考查一元二次不等式恒成立问题,考查一元二次函数的图象与性质,注意数形结合的运用,属基础题.5、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.6、B【解析】
利用函数的周期判断A的正误;通过x=函数是否取得最值判断B的正误;利用函数的图象的平移判断C的正误,利用函数的单调区间判断D的正误.【详解】对于A,f(x)的最小正周期为π,判断A错误;对于B,当x=,函数f(x)=sin(2×+)=1,∴选项B正确;对于C,把的图象向左平移个单位,得到函数sin[2(x+)]=sin(2x+,∴选项C不正确.对于D,由,可得,k∈Z,所以在上不恒为增函数,∴选项D错误;故选B.【点睛】本题考查三角函数的基本性质的应用,函数的单调性、周期性及函数图象变换,属于基本知识的考查.7、D【解析】
根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.8、A【解析】
将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.9、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值10、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.12、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。13、(2,3)【解析】
将直线方程变形为,它表示过两直线和的交点的直线系,解方程组,得上述直线恒过定点,故答案为.【方法点睛】本题主要考查待定直线过定点问题.属于中档题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.14、【解析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.15、【解析】
根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.16、①②【解析】
根据题意作出折起后的几何图形,再根据线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识即可判断各选项的真假.【详解】作出折起后的几何图形,如图所示:.因为,分别是,的中点,所以是的中位线,所以.而面,所以面,①正确;无论怎样折起,始终有,所以面,即有,而,所以,②正确;折起后,面,面,且,故与是异面直线,③错误.故答案为:①②.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识的应用,意在考查学生的直观想象能力和逻辑推理能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.18、(1)(2)【解析】
(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的通项公式,最后利用对数的运算性质可以求出数列的通项公式;(2)利用错位相消法可以求出数列的前项和.【详解】解(1)∵是等比数列∴又∵由是递增数列解得,且公比∴(2),两式相减得:∴【点睛】本题考查了等比数列下标的性质,考查了求等比数列通项公式,考查了对数运算的性质,考查了错位相消法,考查了数学运算能力.19、(1);(2)114【解析】
(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.20、(1);(2)【解析】
(1)首先利用数列的递推关系式求出数列的通项公式;(2)先求出,再利用裂项相消法求出数列的和,解出即可.【详解】(1)由为数列的前项和,且满足.当时,,得.当时,,得,所以数列是以2为首项,以为公比的等比数列,则数列的通项公式为.(2)由,得由,解得.【点睛】本题考查了等比数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版小学语文三年级上册第四单元测试卷及答案(三套)
- 2025年保安考试试卷及答案
- 丹东无菌实验室施工方案
- 河道锚杆施工方案怎么写
- 丽水缙云县卫生健康系统招聘考试真题2024
- 石家庄外墙防水施工方案
- 防雨型金属桥架施工方案
- 泰安室外篮球场施工方案
- 上海酒店考试试题及答案
- 机场预防性试验施工方案
- 高校教师职业道德概论练习试题
- 体育馆行业音视频系统建设与应用解决方案
- GB/T 19494.2-2023煤炭机械化采样第2部分:煤样的制备
- 2023年【汽车驾驶员(技师)】考试题及汽车驾驶员(技师)试题答案
- 催化重整(石油加工生产技术课件)
- 证监会行业分类结构与代码
- 安全仪表系统SIS课件
- Φ1397套管开窗侧钻操作规程
- 《寻梦环游记(2017)》完整中英文对照剧本
- RB/T 089-2022绿色供应链管理体系要求及使用指南
- 某某集团年度经营计划编制指引
评论
0/150
提交评论