版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北武汉市高一数学第二学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三棱锥中,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是()A. B. C. D.2.设,则()A. B.C. D.3.在中,,,,则的面积是().A. B. C.或 D.或4.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.155.已知函数,且不等式的解集为,则函数的图象为()A. B.C. D.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A. B. C. D.7.已知是圆上的三点,()A. B. C. D.8.公差不为零的等差数列{an}的前n项和为Sn,若a3是a2与a6的等比中项,S3=3,则S8=()A.36 B.42 C.48 D.609.设集合,,则()A. B. C. D.10.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)二、填空题:本大题共6小题,每小题5分,共30分。11.设数列满足,且,则数列的前n项和_______________.12.在等差数列中,,当最大时,的值是________.13.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.14.已知圆上有两个点到直线的距离为3,则半径的取值范围是________15.已知在数列中,且,若,则数列的前项和为__________.16.已知函数fx=cosx+2cosx,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.18.已知圆C过点,且圆心C在直线上.(1)求圆C的标准方程;(2)若过点(2,3)的直线被圆C所截得的弦的长是,求直线的方程.19.如图,在中,,,点在边上,且,.(1)求;(2)求的长.20.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在和的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】是线段上一动点,连接,∵互相垂直,∴就是直线与平面所成角,当最短时,即时直线与平面所成角的正切的最大.此时,,在直角△中,.三棱锥扩充为长方体,则长方体的对角线长为,∴三棱锥的外接球的半径为,∴三棱锥的外接球的表面积为.选B.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.2、C【解析】
函数,函数且,求出【详解】因为且且所以故选:C【点睛】本题考查的是与反三角函数有关的定义域问题,较简单.3、C【解析】,∴,或.()当时,.∴.()当时,.∴.故选.4、B【解析】
将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.5、B【解析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B6、B【解析】
试题分析:由题意.故选B.7、C【解析】
先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【详解】由于是圆上的三点,,则,,故选C.【点睛】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.8、C【解析】
设出等差数列的公差d,根据a3是a2与a6的等比中项,S3=3,利用等比数列的性质和等差数列的前n项和的公式化简得到关于等差数列首项和公差方程组,求出方程组的解集即可得到首项和公差,然后再利用等差数列的前n项和的公式求出S8即可【详解】设公差为d(d≠0),则有,化简得:,因为d≠0,解得a1=-1,d=2,则S8=-82=1.故选:C.【点评】此题考查运用等差数列的前n项和的公式及等比数列的通项公式化简求值,意在考查公式运用,是基础题.9、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.10、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令12、6或7【解析】
利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.13、【解析】
由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【点睛】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.14、【解析】
由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.15、【解析】
根据递推关系式可证得数列为等差数列,利用等差数列通项公式求得,得到,进而求得;利用裂项相消法求得结果.【详解】由得:数列是首项为,公差为的等差数列,即:设前项和为本题正确结果:【点睛】本题考查根据递推关系式证明数列为等差数列、等差数列通项的求解、裂项相消法求数列的前项和;关键是能够通过通项公式的形式确定采用的求和方法,属于常考题型.16、(0,1)【解析】
画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);,;(3).【解析】
(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,有.当时,,;当时,由,可得,上述两式相减得,.适合上式,因此,.由于和两项之间插入个数,使得这个数成等差数列,这个数列的公差为.,且,所以,;(3)由,得.当、,该不等式显然成立;当时,,由,得,设,,当时,,即当时,,即,则.所以,数列的最大项为,又,.由题意可中,满足不等式,和不满足不等式.,则,因此正整数的值为.【点睛】本题考查利用求数列的通项公式、等差数列定义的应用,同时也考查了数列不等式的求解,涉及数列单调性的应用,考查推理能力与运算求解能力,属于中等题.18、(1);(2)或.【解析】
(1)设圆心,由两点间的距离及圆心在直线上,列出方程组,求解即可求出圆心坐标,进而求出半径,写出圆的方程(2)由的长是,求出圆心到直线的距离,然后分直线斜率存在与不存在求解.【详解】(1)设圆C的标准方程为依题意可得:解得,半径.∴圆C的标准方程为;(2),∴圆心到直线m的距离①直线斜率不存在时,直线m方程为:;②直线m斜率存在时,设直线m为.,解得∴直线m的方程为∴直线m的方程为或.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系,点到直线的距离,属于中档题.19、(1);(2)7.【解析】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定理,计算得,在中,由余弦定理,即可计算结果.试题解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考点:正弦定理与余弦定理.20、(1)(2)当时,;当时,;当时,【解析】
(1)利用,时单独讨论.求解.
(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【点睛】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.21、(1)见解析(2)【解析】分析:(1)直接利用频率分布直方图的平均值和中位数公式求解.(2)利用古典概型求这2名市民年龄都在内的概率.详解:(Ⅰ)平均值的估计值:中位数的估计值:因为,所以中位数位于区间年龄段中,设中位数为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舌簧管封装工创新应用考核试卷含答案
- 2026年苏打酒项目可行性研究报告
- 2026年养老服务标准体系项目可行性研究报告
- 2026年器材租赁与共享运动项目可行性研究报告
- 2026年智能车载无线充电系统项目公司成立分析报告
- 2026年解谜喂食玩具项目公司成立分析报告
- 2026年矿业投资风险评估项目可行性研究报告
- 2026年低空安全保障项目可行性研究报告
- 2026年商用车新能源化项目可行性研究报告
- 2026年会计师财务知识考试题库及答案
- 2026湖南衡阳日报社招聘事业单位人员16人备考题库(含答案详解)
- 安全目标管理制度煤厂(3篇)
- 车辆驾驶员岗前培训制度
- 2026年春统编版(新教材)小学道德与法治二年级下册(全册)教学设计(附目录P122)
- 头部护理与头皮健康维护
- 2026届天一大联考高一上数学期末教学质量检测模拟试题含解析
- 2026年山东城市服务职业学院单招职业技能考试题库附答案详解
- 创面换药清洁课件
- 字节跳动+Agent+实践手册
- 【《隔振系统国内外探究现状文献综述》13000字】
- 室内工装设计方案汇报
评论
0/150
提交评论