2024届滨州市重点中学数学高一下期末综合测试模拟试题含解析_第1页
2024届滨州市重点中学数学高一下期末综合测试模拟试题含解析_第2页
2024届滨州市重点中学数学高一下期末综合测试模拟试题含解析_第3页
2024届滨州市重点中学数学高一下期末综合测试模拟试题含解析_第4页
2024届滨州市重点中学数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届滨州市重点中学数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,若,则的取值范围是()A. B. C. D.2.如果成等差数列,成等比数列,那么等于()A. B. C. D.3.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.4.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则5.已知等差数列中,则()A.10 B.16 C.20 D.246.直线经过点和,则直线的倾斜角为()A. B. C. D.7.若数列满足,,则()A. B. C.18 D.208.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(

)A. B. C. D.9.已知等差数列中,,.若公差为某一自然数,则n的所有可能取值为()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,7010.下列四个函数中,与函数完全相同的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.12.若数列满足,,则的最小值为__________________.13.已知,,,则在方向上的投影为__________.14.在中,若,则____;15.计算:______.16.若,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.18.已知数列的前项和为,且,求数列的通项公式.19.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.20.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.21.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为,,且,即,所以.故选A.2、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D3、A【解析】

求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.4、C【解析】

对每一个选项进行判断,选出正确的答案.【详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【点睛】本题考查了不等式的性质,找出反例是解题的关键.5、C【解析】

根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.6、D【解析】

算出直线的斜率后可得其倾斜角.【详解】设直线的斜率为,且倾斜角为,则,根据,而,故,故选D.【点睛】本题考查直线倾斜角的计算,属于基础题.7、A【解析】

首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【点睛】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.8、C【解析】

利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、B【解析】试题分析:由等差数列的通项公式得,公差,所以,可能为,的所有可能取值为选.考点:1.等差数列及其通项公式;2.数的整除性.10、C【解析】

先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.12、【解析】

由题又,故考虑用累加法求通项公式,再分析的最小值.【详解】,故,当且仅当时成立.又为正整数,且,故考查当时.当时,当时,因为,故当时,取最小值为.故答案为:.【点睛】本题主要考查累加法,求最小值时先用基本不等式,发现不满足“三相等”,故考虑与相等时的取值最近的两个正整数.13、【解析】

根据数量积的几何意义计算.【详解】在方向上的投影为.故答案为:1.【点睛】本题考查向量的投影,掌握投影的概念是解题基础.14、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.15、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.16、【解析】

由等比数列前n项公式求出已知等式左边的和,再求解.【详解】易知不合题意,∴,若,则,不合题意,∴,,∴,,又,∴.故答案为:.【点睛】本题考查等比数列的前n项和公式,解题时需分类讨论,首先对的情形进行说明,然后按是否为1分类.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,最小正周期;(2)【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【点睛】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.18、【解析】

当时,,当时,,即可得出.【详解】∵已知数列的前项和为,且,当时,,当时,,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).20、(1).(2)或【解析】

(1)圆心到切线的距离等于圆的半径,从而易得圆标准方程;(2)考虑直线斜率不存在时是否符合题意,在斜率存在时,设直线方程为,根据垂径定理由弦长得出圆心到直线的距离,现由点(圆心)到直线的距离公式可求得.【详解】(1)由于圆A与直线相切,∴,∴圆A的方程为.(2)①当直线与x轴垂直时,易知与题意相符,使.②当直线与x轴不垂直时,设直线的方程为即,连接,则,∵,∴,由,得.∴直线,故直线的方程为或.【点睛】本题考查直线与圆的位置关系,解题关键是垂径定理的应用,在圆中与弦长有关的问题通常都是用垂径定理解决.21、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解析】

(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论