2024届湖南省长沙市稻田中学数学高一下期末统考试题含解析_第1页
2024届湖南省长沙市稻田中学数学高一下期末统考试题含解析_第2页
2024届湖南省长沙市稻田中学数学高一下期末统考试题含解析_第3页
2024届湖南省长沙市稻田中学数学高一下期末统考试题含解析_第4页
2024届湖南省长沙市稻田中学数学高一下期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市稻田中学数学高一下期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“数列为等比数列”是“数列为等比数列”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件2.在△ABC中,三个顶点分别为A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC的内部及其边界上运动,则y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.33.执行如图所示的程序语句,输出的结果为()A. B.C. D.4.如图是一个正四棱锥,它的俯视图是()A. B.C. D.5.等比数列中,,,则公比()A.1 B.2 C.3 D.46.若,则下列结论不正确的是()A. B. C. D.7.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.8.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=59.△ABC中,三个内角A,B,C所对应的边分别为a,b,c,若c=,b=1,∠B=,则△ABC的形状为()A.等腰直角三角形 B.直角三角形C.等边三角形 D.等腰三角形或直角三角形10.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______13.已知,则_________.14.若、分别是方程的两个根,则______.15.在中,若,点,分别是,的中点,则的取值范围为___________.16.已知向量,若向量与垂直,则等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.18.等差数列中,,.(1)求数列的通项公式;(2)设,求数列的前项和.19.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知等比数列的首项为,公比为,它的前项和为.(1)若,,求;(2)若,,且,求.21.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

数列是等比数列与命题是等比数列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若数列是等比数列,则,∴,∴数列是等比数列,若数列是等比数列,则,∴,∴数列不是等比数列,∴数列是等比数列是数列是等比数列的充分非必要条件,故选:A.【点睛】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题.2、B【解析】

根据线性规划的知识求解.【详解】根据线性规划知识,的最小值一定在的三顶点中的某一个处取得,分别代入的坐标可得的最小值是.故选B.【点睛】本题考查简单的线性规划问题,属于基础题.3、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.4、D【解析】

根据正四棱锥的特征直接判定即可.【详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【点睛】本题主要考查了正四棱锥的俯视图,属于基础题.5、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.6、C【解析】

A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,

∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,

,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.7、A【解析】

画出三点的图像,根据的斜率,求得直线斜率的取值范围.【详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【点睛】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.8、D【解析】因为点M,P关于点N对称,所以由中点坐标公式可知.9、D【解析】试题分析:在中,由正弦定理可得,因为,所以或,所以或,所以的形状一定为等腰三角形或直角三角形,故选D.考点:正弦定理.10、A【解析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.13、.【解析】

在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.14、【解析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.15、【解析】

记,,,根据正弦定理得到,再由题意,得到,,推出,再由题意,确定的范围,即可得出结果.【详解】记,,,由得,所以,即,因此,因为,分别是,的中点,所以,同理:,所以,因为且,所以,则,所以,则,所以.即的取值范围为.故答案为【点睛】本题主要考查解三角形,熟记正弦定理,以及两角和的正弦公式即可,属于常考题型.16、2【解析】

根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)方案一概率为,方案二概率为.【解析】

(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18、(1);(2).【解析】

(1)设等差数列的公差为,根据题中条件列有关和的方程组,求出和,即可求出等差数列的通项公式;(2)将数列的通项公式裂项,然后利用裂项求和法求出数列的前项和。【详解】(1)设等差数列的公差为,由可得,解得,;(2),。【点睛】本题考查等差数列通项公式、裂项求和法,在求解等差数列的通项公式时,一般利用方程思想求出等差数列的首项和公差求出通项公式,在求和时要根据数列通项的基本结构选择合适的求和方法对数列求和,属于常考题型,属于中等题。19、(1);(2)【解析】

(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【详解】(1)由得:,即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:【点睛】关系式可构造为,中档题。20、(1);(2).【解析】

(1)根据题意建立和的方程组,求出这两个量,然后利用等比数列的通项公式可求出;(2)分、、三种情况讨论,然后利用等比数列的求和公式求出和,即可计算出.【详解】(1)若,则,得,则,这与矛盾,则,所以,,解得,因此,;(2)当时,则,所以,;当时,,,则,此时;当时,则.因此,.【点睛】本题考查等比数列通项公式的计算,同时也考查了与等比数列前项和相关的数列极限的计算,解题时要注意对公比的取值进行分类讨论,考查运算求解能力,属于中等题.21、(1)见解析;(2)见解析.【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论