版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市淇县第一中学2023-2024学年高一下数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.2.已知向量,,,则()A. B. C. D.3.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1104.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a45.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.6.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为()A. B. C. D.7.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数8.△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=A. B. C. D.9.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.810.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则__________.12.如果事件A与事件B互斥,且,,则=.13.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.14.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.15.已知向量,则与的夹角是_________.16.向量在边长为1的正方形网格中的位置如图所示,则以向量为邻边的平行四边形的面积是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的各项均为正数,,的前项和为,为等比数列,,且.(1)求与;(2)求数列的前项和.18.在平面上有一点列、、、、,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;(1)求点的纵坐标的表达式;(2)若对每个自然数,以、、为边长能构成一个三角形,求的取值范围;(3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;19.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.20.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.21.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.2、D【解析】
利用平面向量垂直的坐标等价条件列等式求出实数的值.【详解】,,,,解得,故选D.【点睛】本题考查向量垂直的坐标表示,解题时将向量垂直转化为两向量的数量积为零来处理,考查计算能力,属于基础题.3、B【解析】
根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【点睛】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.4、C【解析】
在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,
在验证时,把当代入,左端.
故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.5、B【解析】
模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.6、C【解析】
有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,由此能求出从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率.【详解】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:p.故选C.【点睛】本题考查概率的求法,考查古典概型、正方体的结构特征等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.7、A【解析】
判断函数函数,的奇偶性,求出其周期即可得到结论.【详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【点睛】本题考查正弦函数的奇偶性和周期性,属基础题.8、B【解析】
试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可详解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故选B.点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.9、B【解析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】10、D【解析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。12、0.5【解析】
表示事件A与事件B满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【详解】【点睛】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.13、【解析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.14、②④【解析】
利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.15、【解析】
利用向量的数量积直接求出向量的夹角即可.【详解】由题知,,因为,所以与的夹角为.故答案为:.【点睛】本题考查了利用向量的数量积求解向量的夹角,属于基础题.16、3【解析】
将向量平移至相同的起点,写出向量对应的坐标,计算向量的夹角,从而求得面积.【详解】根据题意,将两个向量平移至相同的起点,以起点为原点建立坐标系如下所示:则,故.又两向量的夹角为锐角,故,则该平行四边形的面积为.故答案为:3.【点睛】本题考查用向量解决几何问题的能力,涉及向量坐标的求解,夹角的求解,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】试题分析:(1)的公差为,的公比为,利用等比数列的通项公式和等差数列的前项和公式,由列出关于的方程组,解出的值,从而得到与的表达式.(2)根据数列的特点,可用错位相减法求它的前项和,由(1)的结果知,两边同乘以2得由(1)(2)两式两边分别相减,可转化为等比数列的求和问题解决.试题解析:(1)设的公差为,的公比为,则为正整数,,依题意有,即,解得或者(舍去),故.4分(2).6分,,两式相减得8分,所以12分考点:1、等差数列和等比数列;2、错位相减法求特数列的前项和.18、(1);(2);(3)最大,详见解析;【解析】
(1)易得的横坐标为代入函数即可得纵坐标.(2)易得数列为递减的数列,若要组成三角形则,再代入表达式求解不等式即可.(3)由可知求即可.【详解】(1)由点、点与点构成一个以为顶角顶点的等腰三角形有.故.(2)因为,故为减函数,故,又以、、为边长能构成一个三角形,故即.解得或,又,故.(3)由取(2)中确定的范围内的最小整数,且,故.故,由题当时数列取最大项.故且,计算得当时取最大值.【点睛】本题主要考查了数列与函数的综合题型,需要根据题意找到函数横纵坐标的关系,同时也要列出对应的不等式再化简求解.属于中等题型.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【点睛】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.20、(1)见解析;(2)见解析.【解析】
(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.21、(1);(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- web渗透测试课程设计
- 《戏曲教育在非物质文化遗产传承中的作用与创新发展研究》教学研究课题报告
- 2025年潍坊市北京大学现代农业研究院(潍坊现代农业山东省实验室)招聘工作人员考试核心题库及答案解析
- 2025铜鼓县公开招聘编外用工(公益性岗位)人员9人备考核心题库及答案解析
- 2025云南昆明市第三人民医院“凤凰引进计划”高层次人才招引模拟笔试试题及答案解析
- 2026年甘肃天水市事业单位引进高层次人才(219人)笔试重点试题及答案解析
- 2025年度12月浙江嘉兴市海宁市交通投资控股集团有限公司下属公司招聘4人备考考试题库及答案解析
- 2025年张家港市第五人民医院自主招聘编外合同制卫技人员备考题库及答案详解参考
- 2025广东广州民间金融街管理委员会招聘辅助人员1人备考核心题库及答案解析
- 2025辽宁康复医学中心科研助理招聘考试核心试题及答案解析
- 2024-2025学年贵州省铜仁市高二(上)期末数学试卷(含答案)
- 2024-2025学年云南省昆明市盘龙区五年级(上)期末数学试卷(含答案)
- 《中医治未病实践指南 穴位敷贴干预小儿反复呼吸道感染(编制说明)》
- 2025年物业年终工作总结简单版(4篇)
- 成都理工大学《数字电子技术基础》2023-2024学年第一学期期末试卷
- 化肥生产企业应急响应预案
- 2024年国网35条严重违章及其释义解读-知识培训
- 山东省济南市历下区2024-2025学年九年级上学期期中考试化学试题(含答案)
- YY/T 0063-2024医用电气设备医用诊断X射线管组件焦点尺寸及相关特性
- JBT 9212-2010 无损检测 常压钢质储罐焊缝超声检测方法
- 创业基础智慧树知到期末考试答案章节答案2024年山东大学
评论
0/150
提交评论