2024届湖北省荆州市沙市中学高一下数学期末经典试题含解析_第1页
2024届湖北省荆州市沙市中学高一下数学期末经典试题含解析_第2页
2024届湖北省荆州市沙市中学高一下数学期末经典试题含解析_第3页
2024届湖北省荆州市沙市中学高一下数学期末经典试题含解析_第4页
2024届湖北省荆州市沙市中学高一下数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省荆州市沙市中学高一下数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则2.执行如图所示的程序框图,则输出的值为()A.7 B.6 C.5 D.43.如图,是圆的直径,点是半圆弧的两个三等分点,,,则()A. B. C. D.4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.5.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.6.已知平面平面,,点,,直线,直线,直线,,则下列四种位置关系中,不一定成立的是()A. B. C. D.7.若实数a>b,则下列结论成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx28.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.159.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.10.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.如图,分别沿长方形纸片和正方形纸片的对角线剪开,拼成如图所示的平行四边形,且中间的四边形为正方形.在平行四边形内随机取一点,则此点取自阴影部分的概率是______________12.已知向量,,且,则的值为________.13.中,三边所对的角分别为,若,则角______.14.已知函数的定义域为,则实数的取值范围为_____.15.等差数列,的前项和分别为,,且,则______.16.设是数列的前项和,且,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,,,解三角形.18.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.19.已知,且.(1)求的值;(2)求的值.20.已知函数.(1)用五点法作图,填表井作出的图像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求实数m的取值范围.21.已知函数.(1)求函数的最小正周期;(2)求函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.2、C【解析】

由流程图循环4次,输出,即可得出结果..【详解】初始值,,是,第一次循环:,,是,第二次循环:,,是,第三次循环:,,是,第四次循环:S,,否,输出.故选C.【点睛】本题考查程序框图的循环,分析框图的作用,逐步执行即可,属于基础题.3、A【解析】

连接,证得,结合向量减法运算,求得.【详解】连接,由于是半圆弧的两个三等分点,所以,所以是等边三角形,所以,所以四边形是菱形,所以,所以.故选:A【点睛】本小题主要考查圆的几何性质,考查向量相等的概念,考查向量减法的运算,属于基础题.4、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.5、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.6、D【解析】

平面外的一条直线平行平面内的一条直线则这条直线平行平面,若两平面垂直则一个平面内垂直于交线的直线垂直另一个平面,主要依据这两个定理进行判断即可得到答案.【详解】如图所示:由于,,,所以,又因为,所以,故A正确,由于,,所以,故B正确,由于,,在外,所以,故C正确;对于D,虽然,当不一定在平面内,故它可以与平面相交、平行,不一定垂直,所以D不正确;故答案选D【点睛】本题考查线面平行、线面垂直、面面垂直的判断以及性质应用,要求熟练掌握定理是解题的关键.7、C【解析】

特值法排除A,B,D,单调性判断C【详解】由题意,可知:对于A:当a、b都是负数时,很明显a2<b2,故选项A不正确;对于B:当a为正数,b为负数时,则有,故选项B不正确;对于C:∵a>b,∴2a>2b>0,∴ln2a>ln2b,故选项C正确;对于D:当x=0时,结果不成立,故选项D不正确;故选:C.【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.8、B【解析】

将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.9、C【解析】

根据斜二测画法以及正余弦定理求解各边长再求周长即可.【详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【点睛】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.10、C【解析】

利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设正方形的边长为,正方形的边长为,分别求出阴影部分的面积和平行四边形的面积,最后利用几何概型公式求出概率.【详解】设正方形的边长为,正方形的边长为,在长方形中,,故平行四边形的面积为,阴影部分的面积为,所以在平行四边形KLMN内随机取一点,则此点取自阴影部分的概率是.【点睛】本题考查了几何概型概率的求法,求出平行四边形的面积是解题的关键.12、【解析】

利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.13、【解析】

利用余弦定理化简已知条件,求得的值,进而求得的大小.【详解】由得,由于,所以.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.14、【解析】

根据对数的真数对于0,再结合不等式即可解决.【详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【点睛】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.15、【解析】

取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.16、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当时,,,当,,【解析】

利用已知条件通过正弦定理求出,然后利用正弦定理或余弦定理转化求解,即可求解.【详解】在中,,由正弦定理可得:==,因为,所以或,当时,因为,所以,从而,当时,因为,所以,从而=.【点睛】本题主要考查了三角形的解法,正弦定理以及余弦定理的应用,其中解答中熟记三角形的正弦定理与余弦定理,合理运用是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1).(2)【解析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.19、(1)(2)【解析】

(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题20、(1)见解析;(2)时,,时,;(3).【解析】

(1)当时,求出相应的x,然后填入表中;标出5个点,然后用一条光滑的曲线把它们连接起来;(2)先根据x的范围求出的范围,再由正弦函数的性质可求出函数的最大值和最小值;(3)不等式在上恒成立,转化为在上恒成立,进一步转化为m-2,m+2与函数在上的最值关系,列不等式后求得实数m的取值范围.【详解】(1)x0y131-10(2),,即,所以的最大值为3,最小值为2.(3),,由(2)知,,,且,即m的取值范围为.【点睛】本题考查正弦函数的最值和恒成立问题,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论