




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛第三中学2024年高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对2.若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是()A. B.C. D.3.某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则的值为()A.4 B.5 C.6 D.74.下列正确的是()A.若a,b∈R,则B.若x<0,则x+≥-2=-4C.若ab≠0,则D.若x<0,则2x+2-x>25.已知两条不重合的直线和,两个不重合的平面和,下列四个说法:①若,,,则;②若,,则;③若,,,,则;④若,,,,则.其中所有正确的序号为()A.②④ B.③④ C.④ D.①③6.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.7.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A. B. C.5 D.68.设点是函数图象上的任意一点,点满足,则的最小值为()A. B. C. D.9.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°10.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.12二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.12.在行列式中,元素的代数余子式的值是________.13.在中,,,,则的面积等于______.14.从分别写有1,2,3,4,5的五张卡片中,任取两张,这两张卡片上的数字之差的绝对值等于1的概率为________.15.在等比数列中,已知,则=________________.16.67是等差数列-5,1,7,13,……中第项,则___________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组和第七组的频率并补充完整频率分布直方图.18.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.19.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.20.已知函数(1)若关于的不等式的解集为,求的值;(2)若对任意恒成立,求的取值范围.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。2、A【解析】
先化简函数,然后再根据图象平移得.【详解】由已知,∴.故选A.【点睛】本题考查两角和的正弦公式,考查三角函数的图象平移变换,属于基础题.3、C【解析】
由均值和中位数定义求解.【详解】由题意,,由茎叶图知就是中位数,∴,∴.故选C.【点睛】本题考查茎叶图,考查均值与中位数,解题关键是读懂茎叶图.4、D【解析】对于A,当ab<0时不成立;对于B,若x<0,则x+=-≤-2=-4,当且仅当x=-2时,等号成立,因此B选项不成立;对于C,取a=-1,b=-2,+=-<a+b=-3,所以C选项不成立;对于D,若x<0,则2x+2-x>2成立.故选D.5、C【解析】
根据线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论,逐项判断出各项的真假,即可求出.【详解】对①,若,,,则或和相交,所以①错误;对②,若,,则或,所以②错误;对③,根据面面平行的判定定理可知,只有,,,,且和相交,则,所以③错误;对④,根据面面垂直的性质定理可知,④正确.故选:C.【点睛】本题主要考查有关线面平行,面面平行,线面垂直,面面垂直的命题的判断,意在考查线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论的理解和应用,属于基础题.6、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.7、C【解析】
由已知可得,则,所以的最小值,应选答案C.8、B【解析】
函数表示圆位于x轴下面的部分.利用点到直线的距离公式,求出最小值.【详解】函数化简得.圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题.9、B【解析】试题分析:由,可得,所以,故选B.考点:向量的运算.10、C【解析】∵(a+2b)·(a-3b)=-72,∴二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.12、【解析】
根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.13、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.14、【解析】
基本事件总数n,利用列举法求出这两张卡片上的数字之差的绝对值等于1包含的基本事件有4种情况,由此能求出这两张卡片上的数字之差的绝对值等于1的概率.【详解】从分别写有1,2,3,4,5的五张卡片中,任取两张,基本事件总数n,这两张卡片上的数字之差的绝对值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4种情况,∴这两张卡片上的数字之差的绝对值等于1的概率为p.故答案为.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15、【解析】16、13【解析】
根据数列写出等差数列通项公式,再令算出即可.【详解】由题意,首项为-5,公差为,则等差数列通项公式,令,则故答案为:13.【点睛】等差数列首项为公差为,则通项公式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)144人(2)频率分别为0.08和0.1,见解析【解析】
(1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.(2)由频率分布直方图得第八组频率为0.04,人数为2人,设第六组人数为,则第七组人数为,再由,得,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.1.由此能求出结果.【详解】(1)由图知前5组频率为后三组频率为.全校高三男生身高在180cm以上的人有人.(2)如图知第八组频率为,人数为人.设第六组人数为m,后三组共9人.第七组人数为.,.即第六组4人,第七组3人,其频率分别为0.08和0.1,高度分别为0.016和0.012,如图所示.【点睛】本题考查频率分布直方图的应用,频率分布直方图的性质等基础知识,考查数据处理能力,属于基础题.18、证明见解析【解析】
先证直线平面,再证平面⊥平面.【详解】证明:∵是圆的直径,是圆上任一点,,,平面,平面,,又,平面,又平面,平面⊥平面.【点睛】本题考查圆周角及线面垂直判定定理、面面垂直判定定理的应用,考查垂直关系的简单证明.19、(1);(2)【解析】
(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.20、(1);(2)【解析】
(1)不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.【详解】(1)法一:不等式可化为,其解集为,由根与系数的关系可知,解得,经检验时满足题意.法二:由题意知,原不等式所对应的方程的两个实数根为和4,将(或4)代入方程计算可得,经检验时满足题意.(2)法一:由题意可知恒成立,①若,则恒成立,符合题意。②若,则恒成立,而,当且仅当时取等号,所以,即.故实数的取值范围为.法二:二次函数的对称轴为.①若,即,函数在上单调递增,恒成立,故;②若,即,此时在上单调递减,在上单调递增,由得.故;③若,即,此时函数在上单调递减,由得,与矛盾,故不存在.综上所述,实数的取值范围为.【点睛】本题主要考查一元二次不等式的性质,不等式恒成立中含参问题,意在考查学生的分析能力,计算能力及转化能力,难度较大.21、(1)(2)该高三学生的记忆力x和判断力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西部开发的冷思考
- 资金制度培训
- 智慧商圈标准商铺租赁及转让合同
- 场监督管理局文件:XX企业安全生产标准化评审协议
- 餐饮店员工劳动合同(包含社会保险)
- 草原畜牧业承包经营责任书
- 高科技产业项目参股合作合同范本
- 出租车营运承包与网约车平台合作合同
- 餐饮酒店场地租赁及餐饮服务合同
- 叉车故障诊断与快速修复服务协议
- FZ/T 52004-2007充填用中空涤纶短纤维
- 西方合唱发展史课件
- 基本安全之个人求生新版课件
- 自然资源保护法案例分析
- 2023年东部机场集团有限公司校园招聘笔试模拟试题及答案解析
- 产品质量法企业培训讲座课件
- 钢结构网架施工方案
- 《真菌》精品课件
- 路基路面工程试卷及答案二十套期末复习
- 上海地理会考复习
- 培训课件-安全工器具
评论
0/150
提交评论