版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省阜阳市数学高一下期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则t=()A.32 B.23 C.14 D.132.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.3.已知角的终边上一点,且,则()A. B. C. D.4.已知,若关于x的不等式的解集为,则()A. B. C.1 D.75.在等比数列中,,,则()A. B.C. D.6.角α的终边上有一点P(a,|a|),a∈R且a≠0,则sinα值为()A. B. C.1 D.或7.下列条件不能确定一个平面的是()A.两条相交直线 B.两条平行直线 C.直线与直线外一点 D.共线的三点8.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc29.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.10.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则=_________12.直线x-3y-1=013.在中,.以为圆心,2为半径作圆,线段为该圆的一条直径,则的最小值为_________.14.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.15.已知,,,则的最小值为__________.16.若直线的倾斜角为,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设.(1)用表示的最大值;(2)当时,求的值.18.已知数列中,,.(1)求证:是等差数列,并求的通项公式;(2)数列满足,求数列的前项和.19.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,20.某地区某农产品的销售量与年份有关,下表是近五年的部分统计数据:年份20102012201420162018销售量(吨)114115116116114用所给数据求年销售量(吨)与年份之间的回归直线方程,并根据所求出的直线方程预测该地区2019年该农产品的销售量.参考公式:.21.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.2、B【解析】
由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【点睛】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】
由角的终边上一点得,根据条件解出即可【详解】由角的终边上一点得所以解得故选:B【点睛】本题考查的是三角函数的定义,较简单.4、B【解析】
由韦达定理列方程求出,即可得解.【详解】由已知及韦达定理可得,,,即,,所以.故选:.【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.5、B【解析】
设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.6、B【解析】
根据三角函数的定义,求出OP,即可求出的值.【详解】因为,所以,故选B.【点睛】本题主要考查三角函数的定义应用.7、D【解析】
根据确定平面的公理和推论逐一判断即可得解.【详解】解:对选项:经过两条相交直线有且只有一个平面,故错误.对选项:经过两条平行直线有且只有一个平面,故错误.对选项:经过直线与直线外一点有且只有一个平面,故错误.对选项:过共线的三点,有无数个平面,故正确;故选:.【点睛】本题主要考查确定平面的公理及推论.解题的关键是要对确定平面的公理及推论理解透彻,属于基础题.8、C【解析】
利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.9、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.10、B【解析】
由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【详解】,因为对任意的恒成立,则,,解得:,故选B.【点睛】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵,∴∴=1×[+]=1.故答案为:1.12、π【解析】
将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【详解】因为x-3所以y=33x-33则tanα=33,α=【点睛】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.13、-10【解析】
向量变形为,化简得,转化为讨论夹角问题求解.【详解】由题线段为该圆的一条直径,设夹角为,可得:,当夹角为时取得最小值-10.故答案为:-10【点睛】此题考查求平面向量数量积的最小值,关键在于根据平面向量的运算法则进行变形,结合线性运算化简求得,此题也可建立直角坐标系,三角换元设坐标利用函数关系求最值.14、【解析】
根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.15、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.16、【解析】
首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【点睛】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】
(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综上或.【点睛】本题主要考查了三角函数恒等变换的应用和二次函数的性质问题,考查了分段函数求值问题,是中档题.18、(1)证明见解析,(2)【解析】
(1)由,两边取倒数,得到,根据等差数列的定义证明等差数列,,再利用通项公式求得,从而得到..(2)根据(1)的结论,再用错位相减法求其前n项和.【详解】(1)因为,所以,即,所以是首项为1,公差为的等差数列,所以,即.(2)由(1)知所以①两边同乘以得:②①-②得,,,所以.【点睛】本题主要考查了数列的证明及错位相减法求和,还考查了运算求解的能力,属于难题.19、(1)an=3n-1【解析】
(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62720、;115.25吨【解析】
由表格中的数据先求出,再根据公式求得与的值,得到线性回归方程,取即可求得2019年该农产品销售量的预测值.【详解】由表中数据可得:,,∴,,∴所求回归直线方程为:,由此可以预测2019年该农产品的销售量为:吨.【点睛】本题考查线性回归方程的求法,考查计算能力,难度不大.21、(1)递减区间为[-2,0)和(0,2【解析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=2cos∴ t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富士康入职培训课件
- 家长开学安全教育培训
- 家长安全守法意识培训课件
- 流产与早产预防临床全程管理指南
- 演出合同2026年合同评估协议
- 2026年电子商务平台搭建合同协议
- 2026年母婴用品知识产权转让合同协议
- 海上货物运输合同2026年货物放行协议
- 2026年通信线路标准化建设合同
- 家长会安全培训课件
- 团体团建跳舞活动方案
- 食品加工企业主要管理人员及工程技术人员的配备计划
- 儿童语言发育迟缓课件
- 2025至2030年中国汽车用碳纤维行业竞争格局分析及市场需求前景报告
- 正循环成孔钻孔灌注桩施工方案
- 焊接作业指导书完整版
- 苍南分孙协议书
- 2025年部编版道德与法治六年级上册全册教案设计(共4个单元含有教学计划)
- 2025-2030中国电动警用摩托车和应急摩托车行业市场现状供需分析及投资评估规划分析研究报告
- 企业所得税纳税申报表(2024年修订)填报要点及相关政策分析
- 课程设计说明书
评论
0/150
提交评论