




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙县三中2025届高一下数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定2.已知是定义在上的奇函数,且满足,当时,,则等于()A.-1 B. C. D.13.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A. B. C. D.4.若直线与曲线有公共点,则的取值范围是()A. B.C. D.5.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.246.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度7.已知函数的部分图象如图所示,则()A. B.C. D.8.化成弧度制为()A. B. C. D.9.已知角的终边过点,则的值为A. B. C. D.10.抽查10件产品,设“至少抽到2件次品”为事件,则的对立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品二、填空题:本大题共6小题,每小题5分,共30分。11.设数列的前n项和为,关于数列,有下列三个命题:(1)若既是等差数列又是等比数列,则;(2)若,则是等差数列:(3)若,则是等比数列这些命题中,真命题的序号是__________________________.12.在中,角所对边长分别为,若,则的最小值为__________.13.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)14.函数,的值域是________.15.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;16.函数的单调增区间是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面(I)证明:平面AEC⊥平面BED;(II)若∠ABC=120∘,AE⊥EC,三棱锥E-ACD的体积为18.设,求函数的最小值为__________.19.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.20.动直线m:3x+8y+3λx+λy+21=0(λ∈R)过定点M,直线l过点M且倾斜角α满足cosα,数列{an}的前n项和为Sn,点P(Sn,an+1)在直线l上.(1)求数列{an}的通项公式an;(2)设bn,数列{bn}的前n项和Tn,如果对任意n∈N*,不等式成立,求整数k的最大值.21.(1)解方程:;(2)有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【点睛】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.2、C【解析】
根据求得函数的周期,再结合奇偶性求得所求表达式的值.【详解】由于故函数是周期为的周期函数,故,故选C.【点睛】本小题主要考查函数的周期性,考查函数的奇偶性,考查函数值的求法,属于基础题.3、C【解析】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为2,高为,所以直观图的面积是选C.点睛:本题考查直观图画法,考查基本求解能力.4、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题5、C【解析】
根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.6、D【解析】
试题分析:将函数的图象向右平移,可得,故选D.考点:图象的平移.7、D【解析】
由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得出结论.【详解】根据函数的图象求出函数的周期,然后可以求出,通过函数经过的最大值点求出值,即可得到函数的解析式.由函数的图象可知:,
.
当,函数取得最大值1,所以,
,
故选D.8、A【解析】
利用角度化弧度公式可将化为对应的弧度数.【详解】由题意可得,故选A.【点睛】本题考查角度化弧度,充分利用公式进行计算,考查计算能力,属于基础题.9、B【解析】
由三角函数的广义定义可得的值.【详解】因为,故选B.【点睛】本题考查三角函数的概念及定义,考查基本运算能力.10、D【解析】
由对立事件的概念可知,直接写出其对立事件即可.【详解】“至少抽到2件次品”的对立事件为“至多抽到1件次品”,故选D【点睛】本题主要考查对立事件的概念,熟记对立事件的概念即可求解,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)、(2)、(3)【解析】
利用等差数列和等比数列的定义,以及等差数列和等比数列的前项和形式,逐一判断即可.【详解】既是等差数列又是等比数列的数列是非零常数列,故(1)正确.等差数列的前项和是二次函数形式,且不含常数,故(2)正确.等比数列的前项和是常数加上常数乘以的形式,故(3)正确.故答案为:(1),(2),(3)【点睛】本题主要考查等差数列和等比数列的定义,同时考查了等差数列和等比数列的前项和,属于简单题.12、【解析】
根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.13、12.2【解析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.14、【解析】
利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.15、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.16、,【解析】
令,即可求得结果.【详解】令,解得:,所以单调递增区间是,故填:,【点睛】本题考查了型如:单调区间的求法,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)3+25【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由线面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)设AB=x,通过解直角三角形将AG、GC、GB、GD用x表示出来,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根据条件三棱锥E-ACD的体积为63求出x,即可求出三棱锥E-ACD试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC⊥BD,因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因为AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG为直角三角形,可得BE=22由已知得,三棱锥E-ACD的体积VE-ACD=1从而可得AE=EC=ED=6.所以ΔEAC的面积为3,ΔEAD的面积与ΔECD的面积均为5.故三棱锥E-ACD的侧面积为3+考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力18、9【解析】试题分析:本题解题的关键在于关注分母,充分运用发散性思维,经过同解变形构造基本不等式,从而求出最小值.试题解析:由得,则当且仅当时,上式取“=”,所以.考点:基本不等式;构造思想和发散性思维.19、(1);(2).【解析】
(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由古典概型概率计算公式即可求解.【详解】(1)由频率分布表可得内的频数为,∴∴内的频率为∴∵内的频率为0.04∴(2)由题意可知,第4组共有4人,第5组共有2人,设第4组的4人分别为、、、;第5组的2人分别为、从中任取2人的所有基本事件为:,,,,,,,,,,,,,,共15个.至少一人来自第5组的基本事件有:,,,,,,,共9个.所以.∴所抽取2人中至少一人来自第5组的概率为.【点睛】本题考查了频率分布表及频率分布直方图的应用,列举法表示事件的可能,古典概型概率计算方法,属于基础题.20、(1)an=6•(﹣1)n﹣1;(1)最大值为1.【解析】
(1)由直线恒过定点可得M(1,﹣3),求得直线l的方程,可得an+6=1Sn,运用数列的递推式和等比数列的通项公式,可得所求;(1)bn•(﹣1)n﹣1,讨论n为偶数或奇数,可得Tn,再由不等式恒成立问题解法,可得所求k的范围,可得最大值.【详解】(1)3x+8y+3λx+λy+11=0即为(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直线l的斜率为tanα1,即直线l的方程为y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,当n=1时,可得a1+6=1S1=1a1,即a1=6,n≥1时,an﹣1+6=1Sn﹣1,又an+6=1Sn,相减可得1an=an﹣an﹣1,即an=﹣an﹣1,可得数列{an}的通项公式an=6•(﹣1)n﹣1;(1)bn,即bn•(﹣1)n﹣1,当n为偶数时,Tnn;当n为奇数时,Tnn,当n为偶数时,不等式成立,即为1n﹣7即k≤1n﹣1,可得k≤1;当n为奇数时,不等式成立,即为1n﹣7即4k≤6n﹣1,可得k,综上可得k≤1,即k的最大值为1.【点睛】本题考查数列的递推式的运用,直线方程的运用,数列的分组求和,以及不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏苏州市相城招商(集团)有限公司人员招聘考前自测高频考点模拟试题有答案详解
- 2025广东广州工程技术职业学院第一批招聘一般岗位7人考前自测高频考点模拟试题及1套参考答案详解
- 2025江苏张家港检验认证有限公司招聘1人模拟试卷及答案详解1套
- 2025福建福州市事业单位招聘772人模拟试卷含答案详解
- 2025独山子石化分公司春季高校毕业生招聘(45人)考前自测高频考点模拟试题完整参考答案详解
- 2025鞋类采购合同范本
- 2025年中国活性碳纤维口罩行业市场分析及投资价值评估前景预测报告
- 2025安徽池州市贵池区事业单位招聘67人考前自测高频考点模拟试题及一套参考答案详解
- 2025广东广州医学院第一附属医院住院医师规范化培训招生33人(第二批)模拟试卷及答案详解(全优)
- 2025广西百色市西林县住房和城乡建设局招聘编外2人模拟试卷附答案详解(典型题)
- 小儿推拿教学培训课件
- AI+Agent与Agentic+AI的原理和应用洞察与未来展望
- 白酒企业召回管理制度
- 2025春季学期国开电大法学本科《合同法》一平台在线形考(任务1至4)试题及答案
- 药品网络交易服务三方平台质量管理体系文件-B2B平台(完整版)
- 内墙岩棉夹芯板施工方案
- 门诊输液室管理制度
- 热量表检定装置
- 2025软件工程师面试题库及答案
- 蜜雪冰城转让店协议合同
- 《胆汁回输治疗》课件
评论
0/150
提交评论