版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市永春一中2025届高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.2.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A3.在等差数列中,若,则的值为()A.15 B.21 C.24 D.184.已知、都是单位向量,则下列结论正确的是()A. B. C. D.5.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.96.函数则=()A. B. C.2 D.07.函数(且)的图像是下列图像中的()A. B.C. D.8.已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若方程()恰有5个不同的实数解,则的取值范围是()A. B. C. D.9.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.10.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行二、填空题:本大题共6小题,每小题5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.12.若,点的坐标为,则点的坐标为.13.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.14.等差数列中,公差.则与的等差中项是_____(用数字作答)15.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积(弦矢矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为米,半径等于米的弧田,则弧所对的弦的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.16.方程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求函数的单调递增区间;(2)求函数,的单调递减区间.18.在ΔABC中,角A,B,C,的对边分别是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在线段BC上,且BD=DE=EC,AE=2319.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.20.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.21.已知函数的最小正周期是.(1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.2、C【解析】
试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!3、D【解析】
利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。4、B【解析】
由、都是单位向量,由向量的数量积和共线的定义可判断出正确选项.【详解】由、都是单位向量,所以.设、的夹角为.则,所以A,D不正确.当时,、同向或反向,所以C不正确.,所以B正确.故选:B【点睛】本题考查了单位向量的概念,属于概念考查题,应该掌握.5、C【解析】
利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【详解】且,使得成立的最小正整数故选:【点睛】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.6、B【解析】
先求得的值,进而求得的值.【详解】依题意,,故选B.【点睛】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.7、C【解析】
将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.8、C【解析】当时,有,所以,所以函数在上是周期为的函数,从而当时,,有,又,即,有易知为定义在上的偶函数,所以可作出函数的图象与直线有个不同的交点,所以,解得,故选C.点睛:本题主要考查了函数的奇偶性、周期性、对称性,函数与方程等知识的综合应用,着重考查了数形结合思想研究直线与函数图象的交点问题,解答时现讨论得到分段函数的解析式,然后做出函数的图象,将方程恰有5个不同的实数解转化为直线与函数的图象由5个不同的交点,由数形结合法列出不等式组是解答的关键.9、B【解析】
由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.10、B【解析】
根据线面平行的性质解答本题.【详解】根据线面平行的性质定理,已知直线平面.
对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;
对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;
对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;
对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;
故选:B.【点睛】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.二、填空题:本大题共6小题,每小题5分,共30分。11、825【解析】
以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.12、【解析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.13、371【解析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.14、5【解析】
根据等差中项的性质,以及的值,求出的值即是所求.【详解】根据等差中项的性质可知,的等差中项是,故.【点睛】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.15、【解析】
在中,由题意可知:,弧长为,即可以求出,则求得的值,根据题意可求矢和弦的值及弦长,利用公式可以完成.【详解】如上图在中,可得:,可以得:矢=所以:弧田面积(弦矢矢2)=所以填写(1).(2).【点睛】本题是数学文化考题,扇形为载体的新型定义题,求弦长属于简单的解三角形问题,而作为第二空,我们首先知道公式中涉及到了“矢”,所以我们必须把“矢”的定义弄清楚,再借助定义求出它的值,最后只是简单代入公式计算即能完成.16、或【解析】
由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用余弦函数的单调性列出不等式直接求的单调递增区间.(2)利用正弦函数的单调递减区间,直接求解,的单调递减区间.【详解】解:(1)由,,可得,,函数的单调递增区间:,.(2)因为,;可得,.时,.函数,的单调递减区间:.【点睛】本题考查三角函数的单调性的求法,考查学生的计算能力,属于基础题.18、(1)32+【解析】
(1)根据正弦定理化简边角关系式,可整理出余弦定理形式,得到cosB=12;再根据正弦定理求得sinC,根据同角三角函数得到cosC;根据两角和差公式求得sinA;(2)设BD=x,在【详解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)设BD=x,则:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【点睛】本题考查正弦定理、余弦定理解三角形的问题,涉及到正弦定理化简边角关系式、同角三角函数求解、两角和差公式的运算,考查对于定理和公式的应用,属于常规题型.19、(1)48;(2)30;(3)【解析】
(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽取2人参加决赛,列举出总的基本事件个数,然后列举出最高分甲被抽到的基本事件个数,根据概率公式可得结果.【详解】解:(1)设样本容量为,则,解得,所以样本的容量是48;(2)样本中成绩在分的学生人数为:人;(3)样本中成绩在90.5分以上的同学有人,设这6名同学分别为,其中就是甲,从这6名同学中随机地抽取2人参加决赛有:共15个基本事件,其中最高分甲被抽到的有共5个基本事件,则最高分甲被抽到的概率为.【点睛】本题考查频率,频数,样本容量间的关系,考查古典概型的概率公式,重点是列举出总的基本事件和满足题目要求的基本事件,是基础题.20、(1);(2)增区间是,对称轴为【解析】
(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.21、(1)(2)函数f(x)的最大值是2+,此时x的集合为{x|x=+,k∈Z}.【解析】试题分析析:本题是函数性质问题,可借助正弦函数的图象与性质去研究,根据周期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年赣州远恒佳职业学院辅导员招聘备考题库附答案
- 2026年机械员考试题库及答案(名校卷)
- 2025年临沧职业学院辅导员招聘考试真题汇编附答案
- 2026年陕西省建筑工程总公司职工大学单招职业技能测试模拟测试卷附答案解析
- 2026年一级建造师之一建矿业工程实务考试题库300道及参考答案【培优b卷】
- 2026年湘西民族职业技术学院单招职业适应性考试题库附答案解析
- 杭州城建项目开发经理面试题及答案
- 2026年一级注册建筑师考试题库300道及答案【必刷】
- 2025年重庆市(75所)辅导员考试参考题库附答案
- 2026年二级建造师之二建机电工程实务考试题库500道附答案【满分必刷】
- 2025中国融通资产管理集团有限公司招聘笔试备考试题(230人)附答案解析
- 心脏搭桥课件
- 人工智能行业-“人工智能+”行动深度解读与产业发展机遇
- 2025枣庄市生态环境修复矿区复垦政策实施效果与国土空间规划
- (一诊)达州市2026届高三第一次诊断性测试思想政治试题(含标准答案)
- 购车意向金合同范本
- 2025广东广电网络校园招聘笔试历年参考题库附带答案详解
- 江苏大学《无机与分析化学实验B》2025-2026学年第一学期期末试卷
- 2025GINA全球哮喘处理和预防策略(更新版)解读课件
- 2025年中国职场人心理健康调查研究报告
- 2025四川成都东方广益投资有限公司下属企业招聘9人备考题库及完整答案详解1套
评论
0/150
提交评论