云南省昆明市官渡一中2025届高一数学第二学期期末预测试题含解析_第1页
云南省昆明市官渡一中2025届高一数学第二学期期末预测试题含解析_第2页
云南省昆明市官渡一中2025届高一数学第二学期期末预测试题含解析_第3页
云南省昆明市官渡一中2025届高一数学第二学期期末预测试题含解析_第4页
云南省昆明市官渡一中2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市官渡一中2025届高一数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.2.已知数列{an}满足a1=1,an+1=pan+q,且a2=3,a4=15,则p,q的值为()A. B. C.或 D.以上都不对3.已知直线,,若,则的值为()A.或 B. C. D.4.已知则的最小值是()A. B.4 C. D.55.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.6.已知向量,,若,则()A. B. C. D.7.已知向量,且,则().A. B.C. D.8.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或9.设变量满足约束条件:,则的最小值()A. B. C. D.10.如图,正方形中,分别是的中点,若则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当函数取得最大值时,=__________.12.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.13.已知角满足且,则角是第________象限的角.14.已知数列中,且当时,则数列的前项和=__________.15.已知直线与圆相交于,两点,则=______.16.某市三所学校有高三文科学生分别为500人,400人,300人,在三月进行全市联考后,准备用分层抽样的方法从三所高三文科学生中抽取容量为24的样本,进行成绩分析,则应从校高三文科学生中抽取_____________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.18.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.19.已知A,B,C是的内角,a,b,c分别是其对边长,向量,,且.(1)求角的大小;(2)若,,求的面积.20.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.21.已知.(1)求;(2)求向量与的夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.2、C【解析】

根据数列的递推公式得、建立方程组求得.【详解】由已知得:所以解得:或.故选C.【点睛】本题考查数列的递推公式,属于基础题.3、B【解析】

由两直线平行的等价条件列等式求出实数的值.【详解】,则,整理得,解得,故选:B.【点睛】本题考查利用两直线平行求参数的值,解题时要利用直线平行的等价条件列等式求解,一般是转化为斜率相等来求解,考查运算求解能力,属于基础题.4、C【解析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.5、D【解析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.6、B【解析】

∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算7、D【解析】

运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.8、D【解析】

根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【点睛】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.9、D【解析】

如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.10、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用辅助角将函数利用两角差的正弦公式进行化简,求得函数取得最大值时的与的关系,从而求得,,可得结果.【详解】因为函数,其中,,当时,函数取得最大值,此时,∴,,∴故答案为【点睛】本题考查了两角差的正弦公式的逆用,着重考查辅助角公式的应用与正弦函数的性质,属于中档题.12、117【解析】

由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.13、三【解析】

根据三角函数在各个象限的符号,确定所在象限.【详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【点睛】本小题主要考查三角函数在各个象限的符号,属于基础题.14、【解析】

先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.15、.【解析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.16、8【解析】

利用分层抽样中比例关系列方程可求.【详解】由已知三所学校总人数为500+400+300=1200,设从校高三文科学生中抽取x人,由分层抽样的要求及抽取样本容量为24,所以,,故答案为8.【点睛】本题考查分层抽样,考查计算求解能力,属于基本题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)30人;(2).【解析】

(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【点睛】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.18、(1);(2)存在点使得成立.【解析】

(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【点睛】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.19、(Ⅰ);(Ⅱ)【解析】

(1)先由,结合正弦定理,得到,再由,即可求出结果;(2)由余弦定理得到,进而可求出三角形的面积.【详解】解:(1)∵∴∴∴∴∵∴;(2)在中,,由余弦定理知∴∴【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.20、(1)(2)答案不唯一,具体见解析(3)【解析】

(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰有个周期.⑴当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;⑵当时,方程在内有个实根为,故所有实数根之和为;⑶当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;综上:当时,方程所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论