浙江省亳州市2025届高一数学第二学期期末监测试题含解析_第1页
浙江省亳州市2025届高一数学第二学期期末监测试题含解析_第2页
浙江省亳州市2025届高一数学第二学期期末监测试题含解析_第3页
浙江省亳州市2025届高一数学第二学期期末监测试题含解析_第4页
浙江省亳州市2025届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省亳州市2025届高一数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知中,,则角()A.60°或120° B.30°或90° C.30° D.90°2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍3.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.4.已知函数,其图象与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.5.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)6.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.17.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.8.已知直线,与互相垂直,则的值是()A. B.或 C. D.或9.(2016高考新课标III,理3)已知向量,则ABC=A.30 B.45 C.60 D.12010.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.160.30.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26 C.0.56 D.0.74二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.12.等比数列中,,则公比____________.13.在中,,,,点在线段上,若,则的面积是_____.14.已知直线与直线互相平行,则______.15.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面积是_______16.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角中,,延长至点D,使得,连接.(1)若,求的值;(2)求角D的最大值.18.某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:销售单价/元销售量/万件(1)根据表中数据,建立关于的线性回归方程;(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)参考数据:参考公式:19.已知、、是同一平面内的三个向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+与2﹣共线,求k的值.20.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.21.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由正弦定理求得,再求.【详解】由正弦定理,∴,或,时,,时,.故选:B.【点睛】本题考查正弦定理,在用正弦定理解三角形时,可能会出现两解,一定要注意.2、C【解析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【点睛】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.3、B【解析】

由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.4、A【解析】由题意可得相邻最低点距离1个周期,,,,即,,即所以,包含0,所以k=0,,,,选A.【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.5、C【解析】

根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.6、B【解析】

由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.7、A【解析】

化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.8、B【解析】

根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.9、A【解析】试题分析:由题意,得,所以,故选A.【考点】向量的夹角公式.【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.10、D【解析】

利用互斥事件概率计算公式直接求解.【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:.故选:D.【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.12、【解析】

根据题意得到:,解方程即可.【详解】由题知:,解得:.故答案为:【点睛】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.13、【解析】

过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.14、【解析】

由两直线平行得,,解出值.【详解】由直线与直线互相平行,得,解得.故答案为:.【点睛】本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比,属于基础题.15、【解析】

由已知中圆锥的侧面展开图为半圆且面积为S,我们易确定圆锥的母线长l与底面半径R之间的关系,进而求出底面面积即可得到结论.【详解】如图:设圆锥的母线长为l,底面半径为R若圆锥的侧面展开图为半圆则2πR=πl,即l=2R,又∵圆锥的侧面展开图为半圆且面积为S,则圆锥的底面面积是.故答案为.【点睛】本题考查的知识点是圆锥的表面积,根据圆锥的侧面展开图为半圆,确定圆锥的母线长与底面的关系是解答本题的关键.16、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)在中,由正弦定理得,,再结合在直角中,,然后求解即可;(2)由正弦定理及两角和的余弦可得,然后结合三角函数的有界性求解即可.【详解】解:(1)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,又因为,所以,所以,所以;(2)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,即,即,根据三角函数有界性得,及,解得,所以角D的最大值为.【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.18、(1);(2)8.75元.【解析】

(1)根据最小二乘法求线性回归方程;(2)利用线性回归方程建立利润的函数,再求此函数的最大值.【详解】(1)关于的回归方程为.(2)利润该函数的对称轴方程是,故销售单价定为元时,企业才能获得最大利润.【点睛】本题考查线性回归方程和求利润的最值,属于基础题.19、(1);(2)-2【解析】

(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出;(2)根据向量共线的条件即可求出.【详解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因为,所以:k﹣2=4(2k+3),∴k=﹣2【点睛】本题考查了向量的坐标运算以及向量的垂直和平行,属于基础题.20、(1);(2)存在点,直线方程为.【解析】

(1)设,由题意根据两点间的距离公式即可求解.(2)假设存在点满足题意,此时直线的方程为:.设,,根据题意可得,求出,再将直线与圆联立求出,根据向量共线的坐标表示以及点在圆上,求出即可求解.【详解】(1)设,由得,整理得:,所以点的轨迹方程为.(2)假设存在点满足题意,此时直线的方程为:.设,.因为与关于直线对称,所以解得即.由,得,即.此时,,,所以,所以当时,三点共线.若在曲线上,则,整理得,即,所以,即.综上所述,存在点,满足条件①②,此时直线方程为.【点睛】本小题主要考查坐标法、圆的标准方程、直线与圆的位置关系等基础知识,考查抽象概括能力、运算求解能力,考查数形结合思想、整体运算思想,化归与转化思想等.21、(1)见证明;(2)【解析】

(1)取PD中点G,可证EFGA是平行四边形,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论