版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市岢岚中学2025届高一数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则=()A. B.C. D.2.在直角梯形中,,为的中点,若,则A.1 B. C. D.3.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.4.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.6.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为()A.5 B.10 C.15 D.207.已知两个正数a,b满足,则的最小值是(
)A.2 B.3 C.4 D.58.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面9.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④10.方程的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.12.已知三棱锥的外接球的球心恰好是线段的中点,且,则三棱锥的体积为__________.13.,则f(f(2))的值为____________.14.在等差数列中,,,则公差______.15.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________16.函数的单调增区间是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)把表示为的形式,并写出函数的最小正周期、值域;(2)求函数的单调递增区间:(3)定义:对于任意实数、,设,(常数),若对于任意,总存在,使得恒成立,求实数的取值范围.18.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.20.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式21.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据正弦定理,代入即可求解.【详解】因为中,,,由正弦定理可知代入可得故选:C【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.2、B【解析】
连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.3、A【解析】,,,故选A.4、A【解析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件5、C【解析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.6、B【解析】
利用分层抽样的定义和方法求解即可.【详解】设应抽取的女生人数为,则,解得.故选B【点睛】本题主要考查分层抽样的定义及方法,意在考查学生对这些知识的理解掌握水平,属于基础题.7、D【解析】
根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.8、D【解析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.9、D【解析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.10、C【解析】
把方程化为,结合正切函数的性质,即可求解方程的解,得到答案.【详解】由题意,方程,可化为,解得,即方程的解集为.故答案为:C.【点睛】本题主要考查了三角函数的基本关系式,以及三角方程的求解,其中解答中熟记正切函数的性质,准确求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①【解析】
由线面的平行垂直的判定和性质一一检验即可得解.【详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【点睛】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.12、【解析】
根据题意得出平面后,由计算可得答案.【详解】因为三棱锥的外接球的球心恰好是的中点,所以和都是直角三角形,又因为,所以,,又,则平面.因为,所以三角形为边长是的等边三角形,所以.故答案为:【点睛】本题考查了直线与平面垂直的判定,考查了三棱锥与球的组合,考查了三棱锥的体积公式,属于中档题.13、1【解析】
先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.14、3【解析】
根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.15、【解析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.16、,【解析】
先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(3)【解析】
(1)结合二倍角正弦公式和辅助角公式即可化简;(2)结合(1)中所求表达式,正弦型函数单调增区间的通式即可求解;(3)根据题意可得,,求出的值域,列出关于的不等式组,即可求解【详解】(1),,值域为;(2)令,解得,所以函数的单调递增区间为,;(3)若对于任意,总存在,使得恒成立,则,,当,即时,,当,即时,,故,所以,解得,所以实数的取值范围是【点睛】本题考查三角函数的化简和三角函数的性质应用,函数恒成立问题的转化,属于中档题18、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点N满足题意,则设P(x,y),,得,且,求出λ,然后求解比值.详解:(Ⅰ)依题意得,令且,得直线过定点(Ⅱ)当时,所截得弦长最短,由题知,,得,由得(Ⅲ)法一:由题知,直线的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得,说以(舍去,与重合),综上可知,在直线上存在定点,使得为常数点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系所通过的定点.19、(1)见解析;(2).【解析】
由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.20、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】
(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年吉林工业职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年广西经济职业学院单招职业适应性测试参考题库及答案解析
- 2026年湖南电子科技职业学院单招职业适应性测试参考题库及答案解析
- 2026年四川艺术职业学院单招职业适应性考试备考题库及答案解析
- 2026年辽宁装备制造职业技术学院单招职业适应性测试参考题库及答案解析
- 2026年泉州海洋职业学院单招职业适应性考试参考题库及答案解析
- 2026年平凉职业技术学院单招职业适应性测试参考题库及答案解析
- 2026年金华职业技术学院单招职业适应性考试模拟试题及答案解析
- 陕西省西安市未央区西安市西航一中2025-2026学年上学期第二次质量检测九年级数学试卷(无答案)
- 2026年红河卫生职业学院单招职业适应性测试模拟试题及答案解析
- led屏安装施工步骤方案
- 钢筋桁架楼承板专项施工方案
- 非开挖顶管合同范本
- 专家讲座的协议书
- 雨课堂学堂在线学堂云民族学导论专题中央民族大学单元测试考核答案
- 【语文】小学一年级上册期末质量试卷
- 2026元旦班级联欢晚会活动主题班会:星光闪耀迎新夜 课件
- 2025年内蒙古行政执法人员资格认证考试题库真题库及答案
- 急性胰腺炎重症患者白蛋白输注方案
- 《产业经济学》课程论文选题、要求和评分标准
- 中国-东盟贸易投资合作进展报告2024-2025-深圳大学
评论
0/150
提交评论