2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第1页
2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第2页
2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第3页
2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第4页
2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省揭阳市重点名校高一下数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的一个区间是().A. B. C. D.2.函数f(x)=log3(2﹣x)的定义域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]3.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.94.已知菱形的边长为,则()A. B. C. D.5.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]6.不等式的解集是A. B.C.或 D.7.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为8.已知M为z轴上一点,且点M到点与点的距离相等,则点M的坐标为()A. B. C. D.9.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图可以看出y与x线性相关,且回归方程,则当时,估计y的值为()A.7.1 B.7.35 C.7.95 D.8.610.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥的外接球的球心恰好是线段的中点,且,则三棱锥的体积为__________.12.已知数列是等差数列,,那么使其前项和最小的是______.13.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557514.在中,角的对边分别为,若面积,则角__________.15.设,,则______.16.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)用五点法作出函数在区间上的大致图象(列表、描点、连线);(2)若,,求的值.18.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.19.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.20.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.21.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(2)设直线与圆交于不同的两点、,且,求圆的方程;(3)设直线与(2)中所求圆交于点、,为直线上的动点,直线、与圆的另一个交点分别为、,求证:直线过定点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.2、C【解析】试题分析:利用对数函数的性质求解.解:函数f(x)=log3(1﹣x)的定义域满足:1﹣x>0,解得x<1.∴函数f(x)=log3(1﹣x)的定义域是(﹣∞,1).故选C.考点:对数函数的定义域.3、C【解析】

由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【点睛】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.4、D【解析】

由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题5、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.6、B【解析】试题分析:∵,∴,即,∴不等式的解集为.考点:分式不等式转化为一元二次不等式.7、C【解析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.8、C【解析】

根据题意先设,再根据空间两点间的距离公式,得到,再由点M到点与点的距离相等建立方程求解.【详解】设根据空间两点间的距离公式得因为点M到点与点的距离相等所以解得所以故选:C【点睛】本题主要考查了空间两点间的距离公式,还考查了运算求解的能力,属于基础题.9、B【解析】

计算,,代入回归方程计算得到,再计算得到答案.【详解】,,故,解得.当,.故选:【点睛】本题考查了回归方程的应用,意在考查学生的计算能力.10、A【解析】

∵∴−=3(−);∴=−.故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得出平面后,由计算可得答案.【详解】因为三棱锥的外接球的球心恰好是的中点,所以和都是直角三角形,又因为,所以,,又,则平面.因为,所以三角形为边长是的等边三角形,所以.故答案为:【点睛】本题考查了直线与平面垂直的判定,考查了三棱锥与球的组合,考查了三棱锥的体积公式,属于中档题.12、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。13、60【解析】

由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题14、【解析】

根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.15、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、【解析】2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有(数学1,数学2,语文),(数学1,语文,数学2),(数学2,数学1,语文),(数学2,语文,数学1),(语文,数学1,数学2),(语文,数学2,数学1)共6个,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故2本数学书相邻的概率.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)将分别取、、、、,求出对应的值和的值,并列出表格,利用五点法可作出函数在区间上的大致图象;(2)利用同角三角函数的基本关系求出、、的值,代入计算即可.【详解】(1)列表如下:作图如下:(2)因为,,所以,,.所以.【点睛】本题考查正弦型函数“五点法”作图,同时也考查了利用同角三角函数的基本关系求值,考查分析问题和解决问题的能力,属于中等题.18、(1)(2)【解析】

(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.19、(1)1;(2)证明见解析,;(3)存在,.【解析】

(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即

所以(3)因为对于任意的都有所以【点睛】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.20、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,.由于,可得.又,所以.由得,满足,故.点睛:⑴求圆的方程一般有两种方法:①待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程;②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.21、(1)证明见解析;(2);(3)证明见解析.【解析】

(1)由题意设圆心坐标为,可得半径为,求出圆的方程,分别令、,可得出点、的坐标,利用三角形的面积公式即可证明出结论成立;(2)由,知,利用两直线垂直的等价条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离,即可得到所求圆的方程;(3)设,、,求得、的坐标,以及直线、的方程,联立圆的方程,利用韦达定理,结合,得出,设直线的方程为,代入圆的方程,利用韦达定理,可得、之间的关系,即可得出所求的定点.【详解】(1)由题意可设圆心为,则圆的半径为,则圆的方程为,即.令,得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论