版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省铜仁市西片区高中教育联盟高一数学第二学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.92.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则5.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.6.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.7.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.148.在区间上随机取一个数,使得的概率为()A. B. C. D.9.设a,b,c为的内角所对的边,若,且,那么外接圆的半径为A.1 B. C.2 D.410.函数的图象如图所示,则y的表达式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.12.某空间几何体的三视图如图所示,则该几何体的体积为________13.设为等差数列,若,则_____.14.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.15.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.16.若关于的不等式有解,则实数的取值范围为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)0.35第3组[70,80)30第4组[80,90)200.20第5组[90,100]100.10合计1001.00(Ⅰ)求的值;(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.18.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.19.正方体的棱长为点分别是棱的中点(1)证明:四边形是一个梯形:(2)求几何体的表面积和体积20.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.21.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项2、A【解析】
根据题意,作出截面图,计算弧长即可.【详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【点睛】本题考查弧长的计算公式,二面角的定义,属综合基础题.3、C【解析】
通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.4、B【解析】
根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.5、B【解析】
计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.6、B【解析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.7、D【解析】
将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.8、A【解析】则,故概率为.9、A【解析】
由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【详解】∵,∴,整理得b2+c2-a2=bc,根据余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故选A【点睛】已知三边关系,可转化为接近余弦定理的形式,直接运用余弦定理理解三角形,注意整体代入思想.10、B【解析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1),;(2)125.【解析】
(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.12、2【解析】
根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.13、【解析】
根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。14、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.15、【解析】
利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.16、【解析】
利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)35,0.30;(2).【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.试题解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:×30=3人,第4组:×20=2人,第5组:×10=1人,所以第3、4、5组应分别抽取3人、2人、1人设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为=点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18、(1),(2)【解析】
(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定理,二次函数等基本知识,属于中档题.19、(1)证明见解析(2)表面积为,体积为【解析】
(1)在正方体中,根据分别是棱的中点,由中位线得到且,又由,根据公理4平行关系的传递性得证.(2)几何体的表面积,上下底是直角三角形,三个侧面,有两个是全等的直角梯形,另一个是等腰梯形求解,体积按照棱台体积公式求解.【详解】(1)如图所示:在正方体中,因为分别是棱的中点,所以且,又因为,所以且,所以四边形是一个梯形.(2)几何体的表面积为:.体积为:.【点睛】本题主要考查几何体中的截面问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1)见证明;(2)【解析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.【详解】(1)证明:取的中点,连接.∵是中点∴又是的中点,∴∴,从而四边形是平行四边形,故又平面,平面,∴(2)∵平面,∴是在平面内的射影为与平面所成角,四边形为矩形,∵,∴,∴过点作交的延长线于,连接,∵平面据三垂线定理知.∴是二面角的平面角易知道为等腰直角三角形,∴∴=∴二面角的正切值为【点睛】本小题主要考查线面平行的证明,考查线面角的定义和应用,考查面面角的正切值的求法,考查逻辑推理能力和空间想象能力,属于中档题.21、(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期心脏病患者围产期用药方案调整策略
- 妊娠合并心脏病产后抗凝药物剂量调整策略
- 产后恢复考试题及答案
- 头颈肿瘤MDT的修复重建策略整合
- 超级考试题及答案
- 2025年高职煤矿机电设备(机电设备维护)试题及答案
- 2025年高职中西医结合(中西医结合)技能测试题
- 2026年搬家服务(物品搬运规范)试题及答案
- 2025年中职家庭农场生产经营(家庭农场营销)试题及答案
- 2025年中职矿山机电(设备控制)试题及答案
- 2025年全国高压电工操作证理论考试题库(含答案)
- 2025-2026学年(通*用版)高二上学期期末测试【英语】试卷(含听力音频、答案)
- 翻车机工操作技能水平考核试卷含答案
- 员工宿舍安全培训资料课件
- 2025年中职食品雕刻(食品雕刻技术)试题及答案
- 2026青海西宁市湟源县水务发展(集团)有限责任公司招聘8人考试参考试题及答案解析
- 舞台灯光音响控制系统及视频显示系统安装施工方案
- 2025年大学(运动康复)运动康复治疗技术测试试题及答案
- 1256《数据库应用技术》国家开放大学期末考试题库
- 美容院店长年度总结课件
- 2025福建省能源石化集团有限责任公司秋季招聘416人参考考试试题及答案解析
评论
0/150
提交评论