2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题含解析_第1页
2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题含解析_第2页
2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题含解析_第3页
2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题含解析_第4页
2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省阜阳市太和中学数学高一下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数定义域是()A. B. C. D.2.已知a,b,,且,,则()A. B. C. D.3.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=54.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.5.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.66.若,则下列不等式恒成立的是A. B. C. D.7.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.8.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.609.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()A. B. C. D.10.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥二、填空题:本大题共6小题,每小题5分,共30分。11.在行列式中,元素的代数余子式的值是________.12.若、是方程的两根,则__________.13.函数的最大值为.14.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.15.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)16.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值及f(x)的对称轴;(2)将的图象向左平移个单位得到函数的图象,求的单调递增区间.18.某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.19.在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,(1)求该圆的圆心的坐标;(2)若,求直线BC的方程;(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.20.已知单调递减数列的前项和为,,且,则_____.21.如图,在四棱锥中,底面是直角梯形,侧棱底面,垂直于和,为棱上的点,,.(1)若为棱的中点,求证://平面;(2)当时,求平面与平面所成的锐二面角的余弦值;(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

若函数有意义,则需满足,进而求解即可【详解】由题,则,解得,故选:A【点睛】本题考查具体函数的定义域,属于基础题2、A【解析】

利用不等式的基本性质以及特殊值法,即可得到本题答案.【详解】由不等式的基本性质有,,故A正确,B不正确;当时,,但,故C、D不正确.故选:A【点睛】本题主要考查不等式的基本性质,属基础题.3、D【解析】因为点M,P关于点N对称,所以由中点坐标公式可知.4、B【解析】

设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5、B【解析】

由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.6、D【解析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D7、C【解析】

根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.8、A【解析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.9、D【解析】

采用列举法写出总事件,再结合古典概型公式求解即可【详解】被选出的情况具体有:甲乙、甲丙、乙丙,甲被选中有两种,则故选:D10、C【解析】

根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.12、【解析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.13、【解析】略14、【解析】

根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【点睛】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.15、①②【解析】

根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.16、【解析】四棱锥的侧面积是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)。【解析】

(1)求得函数,代入即可求解的值,令,即可求得函数的对称轴的方程;(2)由(1),结合三角函数的图象变换,求得,再根据三角函数的性质,即可求解.【详解】(1)由函数,则,令,解得,即函数的对称轴的方程为(2)由(1)可知函数的图象向左平移个单位得到函数的图象,可得的图象,令,解得,所以函数的单调递增区间为.【点睛】本题主要考查了三函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换求得函数的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2).【解析】

(1)写出从5个学生中任选2个人的所有等可能基本事件,计算事件2个人都是女生所含的基本事件个数;(2)写出从男生和女生中各选1个人的所有等可能基本事件,计算事件2个人包括,但不包括所含的基本事件个数.【详解】(1)由题意知,从5个学生中任选2个人,其所有等可能基本事件有:,,,,,,,,,,共10个,选2个人都是女生的事件所包含的基本事件有,,,共3个,则所求事件的概率为.(2)从男生和女生中各选1个人,其所有可能的结果组成的基本事件有,,,,,,共6个,包括,但不包括的事件所包含的基本事件有,,共2个,则所求事件的概率为.【点睛】本题的两问均考查利用古典概型的概率计算公式,求事件发生的概率,求解过程中要求列出所有等可能结果,并指出事件所包含的基本事件个数,最后代入公式计算概率.19、(1)(2)或(3),【解析】

(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平分,得,,于是点既在圆上,又在圆上,从而圆与圆上有公共点,即可求解.【详解】(1)将代入圆得,解得,.半径.(2),,且,设直线,即,圆心到直线的距离,由勾股定理得,,,,或,所以直线的方程为或.(3)设,,,,因为平行四边形的对角线互相平分,所以①,因为点在圆上,所以②将①代入②,得,于是点既在圆上,又在圆上,从而圆与圆有公共点,所以,解得.因此,实数的取值范围是,.【点睛】本题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,综合性较强,难度较大.20、【解析】

根据,再写出一个等式:,利用两等式判断并得到等差数列的通项,然后求值.【详解】当时,,∴.当时,,①,②①②,得,化简得,或,∵数列是递减数列,且,∴舍去.∴数列是等差数列,且,公差,故.【点睛】在数列中,其前项和为,则有:,利用此关系,可将与的递推公式转化为关于的等式,从而判断的特点.21、(1)见解析;(2);(3)即点N在线段CD上且【解析】

(1)取线段SC的中点E,连接ME,ED.可证是平行四边形,从而有,则可得线面平行;(2)以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,求出两平面与平面的法向量,由法向量夹角的余弦值可得二面角的余弦值;(3)设,其中,求出,由MN与平面所成角的正弦值为与平面的法向量夹角余弦值的绝对值可求得结论.【详解】(1)证明:取线段SC的中点E,连接ME,ED.在中,ME为中位线,∴且,∵且,∴且,∴四边形AMED为平行四边形.∴.∵平面SCD,平面SCD,∴平面SCD.(2)解:如图所示以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论