版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数概念与表示一.【要点归纳】1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。2.构成函数的三要素:定义域、对应关系和值域求函数的值域的常见方法:①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。4.区间(1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8.复合函数若y=f(u),u=g(x),x(a,b),u(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域二.【常见题型】题型一:函数概念1.设函数则不等式的解集是()A. B.C. D.变式题:已知函数若,则.2.(1)函数对于任意实数满足条件,若则___;(2)函数对于任意实数满足条件,若则______。题型二:判断两个函数是否相同3.试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=;(4)f(x)=x2-2x-1,g(t)=t2-2t-1。题型三:函数定义域问题4.求下述函数的定义域:(1);(2)5.已知函数定义域为(0,2),求下列函数的定义域:(1);(2)。题型四:函数值域问题5.求下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)。题型五:函数解析式6.(1)已知,求;(2)已知,求;(3)已知是一次函数,且满足,求;(4)已知满足,求。7.已知向量(1)当时,求的值.(2)求·的最大值与最小值.8.北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x元(x∈N*).(Ⅰ)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域);(Ⅱ)当每枚纪念销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值.函数基本性质一.【要点归纳】1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:eq\o\ac(○,1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;eq\o\ac(○,2)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:eq\o\ac(○,1)首先确定函数的定义域,并判断其定义域是否关于原点对称;eq\o\ac(○,2)确定f(-x)与f(x)的关系;eq\o\ac(○,3)作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:eq\o\ac(○,1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;eq\o\ac(○,2)必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y=f[g(x)],其中u=g(x),A是y=f[g(x)]定义域的某个区间,B是映射g:x→u=g(x)的象集:①若u=g(x)在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y=f[g(x)]在A上是增函数;②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y=f[g(x)]在A上是减函数。(4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:(1)任取x1,x2∈D,且x1<x2;eq\o\ac(○,2)作差f(x1)-f(x2);eq\o\ac(○,3)变形(通常是因式分解和配方);(2)定号(即判断差f(x1)-f(x2)的正负);eq\o\ac(○,5)下结论(即指出函数f(x)在给定的区间D上的单调性)。(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;3.最值(1)定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。注意:(1)函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;(2)函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。(2)利用函数单调性的判断函数的最大(小)值的方法:eq\o\ac(○,1)利用二次函数的性质(配方法)求函数的最大(小)值;eq\o\ac(○,2)利用图象求函数的最大(小)值;eq\o\ac(○,3)利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);4.周期性(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)=f(x),则称f(x)为周期函数;(2)性质:①f(x+T)=f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为二.【常见题型】题型一:判断函数的奇偶性1.讨论下述函数的奇偶性:题型二:奇偶性的应用3.已知函数为奇函数,,且不等式的解集是∪(1)求a,b,c。(2)是否存在实数m使不等式对一切成立?若存在,求出m的取值范围;若不存在,请说明理由。题型三:判断证明函数的单调性5.已知函数.(1)若,求的值;(2)若对于恒成立,求实数m的取值范围.6.已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+,讨论F(x)的单调性,并证明你的结论。题型四:函数的单调区间7.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则() A.B.C.D.8.(1)求函数的单调区间;(2)已知若试确定的单调区间和单调性。题型五:单调性的应用9.已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。题型六:最值问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微创手术中脑氧供需平衡的管理策略
- 循证护理在神经外科微创术后感染防控中的应用
- 2025年户外运动基地合作协议
- 建筑工人腕管综合征病因学研究进展
- 延续护理背景下护士角色专业化的认证标准
- 康复教学查房的功能重建闭环策略
- 应急医疗资源储备结构的优化调整策略
- 幽门螺杆菌感染的传播生态位与防控策略
- 干细胞联合生物材料修复脊髓损伤的策略
- 干细胞治疗斑块破裂的预防策略
- 印度尼西亚矿产资源特征及其时空分布规律
- 肝栓塞介入手术后护理
- 《辣椒病害图谱》课件
- 超市火灾安全演练与疏散预案
- 教育教学微型课题申请·评审表
- 职业技术学院《建筑力学与结构》课程标准
- 翻译技术实践智慧树知到期末考试答案章节答案2024年山东师范大学
- JJG 621-2012 液压千斤顶行业标准
- 本科实习男护生职业认同感调查及影响因素分析
- 未分化型精神分裂症的护理查房
- 工控组态技术及应用-MCGS模块三MCGS模拟量组态基本知识课件
评论
0/150
提交评论