版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省禄劝彝族苗族自治县一中高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.2.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛 B.22斛C.36斛 D.66斛3.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量4.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.245.数列中,,且,则数列前2019项和为()A. B. C. D.6.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.7.某几何体的三视图如图所示,其外接球体积为()A. B. C. D.8.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.9.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.210.将函数的图象沿轴向左平移个单位,得到一个偶函数的图象,则的一个可能取值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在各项均为正数的等比数列中,,,则___________.12.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.13.在中,,点在边上,若,的面积为,则___________14.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.15.点关于直线的对称点的坐标为_____.16.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.不等式(1)若不等式的解集为或,求的值(2)若不等式的解集为,求的取值范围18.已知(1)求的定义域;(2)判断的奇偶性并予以证;;(3)求使>0成立的x的取值范围.19.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.20.在梯形ABCD中,,,,.(1)求AC的长;(2)求梯形ABCD的高.21.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.2、B【解析】试题分析:设圆锥底面半径为r,则14×2×3r=8,所以r=163,所以米堆的体积为14考点:圆锥的性质与圆锥的体积公式3、D【解析】
由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【点睛】本题考查了相等向量的定义,属基础题.4、D【解析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D5、B【解析】
由,可得,化为:,利用“累加求和”方法可得,再利用裂项求和法即可得解.【详解】解:∵,∴,整理得:,∴,又∴,可得:.则数列前2019项和为:.故选B.【点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.6、A【解析】
正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积7、D【解析】
易得该几何体为三棱锥,再根据三视图在长方体中画出该三棱锥,再根据此三棱锥与长方体的外接球相同求解即可.【详解】在长方体中画出该几何体,易得为三棱锥,且三棱锥与该长方体外接球相同.又长方体体对角线等于外接球直径,故.故外接球体积故选:D【点睛】本题主要考查了三视图还原几何体以及求外接球体积的问题,属于基础题.8、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.9、B【解析】
根据不等式组画出可行域,数形结合解决问题.【详解】不等式组确定的可行域如下图所示:因为可化简为与直线平行,且其在轴的截距与成正比关系,故当且仅当目标函数经过和的交点时,取得最小值,将点的坐标代入目标函数可得.故选:B.【点睛】本题考查常规线性规划问题,属基础题,注意数形结合即可.10、B【解析】
利用函数y=Asin(ωx+)的图象变换可得函数平移后的解析式,利用其为偶函数即可求得答案.【详解】令y=f(x)=sin(2x+),则f(x)=sin[2(x)+]=sin(2x),∵f(x)为偶函数,∴=kπ,∴=kπ,k∈Z,∴当k=0时,.故的一个可能的值为.故选:B.【点睛】本题考查函数y=Asin(ωx+)的图象变换,考查三角函数的奇偶性的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.12、【解析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。13、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.14、【解析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.15、【解析】
设关于直线的对称点的坐标为,再根据中点在直线上,且与直线垂直求解即可.【详解】设关于直线的对称点的坐标为,则中点为,则在直线上,故①.又与直线垂直有②,联立①②可得.故.故答案为:【点睛】本题主要考查了点关于直线对称的点坐标,属于基础题.16、【解析】
作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据一元二次不等式的解和对应一元二次方程根的关系,求得的值.(2)利用一元二次不等式解集为的条件列不等式组,解不等式组求得的取值范围.【详解】(1)由于不等式的解集为或,所以,解得.(2)由于不等式的解集为,故,解得.故的取值范围是.【点睛】本小题主要考查一元二次不等式的解与对应一元二次方程根的关系,考查一元二次不等式恒成立问题的求解策略,属于基础题.18、(1);(2)奇函数,证明见解析;(3)见解析【解析】
(1)解不等式即得函数的定义域;(2)利用奇偶性的定义判断函数的奇偶性并证明;(3)对a分类讨论,利用对数函数的单调性解不等式.【详解】(1)由题得,所以,所以函数的定义域为;(2)函数的定义域为,所以函数的定义域关于原点对称,所以,所以函数f(x)为奇函数.(3)由题得,当a>1时,所以,因为函数的定义域为,所以;当0<a<1时,所以.【点睛】本题主要考查对数函数的定义域的求法,考查函数奇偶性的判断和证明,考查对数函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)(2)【解析】
(1)利用正弦定理与余弦的差角公式运算求解即可.(2)根据正弦定理可得,再利用余弦定理与基本不等式求得再代入面积求最大值即可.【详解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)结合(1)由正弦定理可知,由余弦定理可知,所以当且仅当时等号成立,所以,所以面积的最大值为.【点睛】本题主要考查了正余弦定理与三角形面积公式在解三角形中的运用.同时考查了根据基本不等式求解三角形面积的最值问题.属于中档题.20、(1)(2).【解析】
(1)首先计算,再利用正弦定理计算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函数得到高的大小.【详解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编本新教材二年级语文下册《6.千人糕》教案设计
- 餐桌培训制作教程
- 2026校招:版图设计题目及答案
- 2026校招:Android开发笔试题及答案
- 2026新学期升旗仪式讲话稿:赴春光之约做向善追锋者
- 2026中考冲刺动员大会校长发言稿:冲刺今朝我们陪你不负时光
- 建筑施工企业安全生产条件动态核查规则
- 深圳市龙华区人民法院执行款收款账户确认书【模板】
- 医院护理文书书写规范自查整改回头看报告
- 餐厅内部管理培训
- 律师理论考试试题及答案
- 广东省广州市荔湾区2025-2026学年第一学期四年级数学期末试卷(无答案)
- 2026秋招:神州数码集团笔试题及答案
- 中国临床肿瘤学会(csco)胰腺癌诊疗指南
- 《中国人身保险业经验生命表(2025)》
- 华为合伙人与股权分配方案
- DB54∕T 0366-2024 耕地土壤重金属污染修复技术导则
- 人工智能在核磁共振波谱法中的应用研究进展
- 基本公共卫生服务均等化
- 后循环缺血护理
- 智能建造理论与实践 课件 第五章 智能建造多场景实例
评论
0/150
提交评论