




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市林州市林滤中学高三一诊考试新高考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.2.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.3.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.4.已知实数集,集合,集合,则()A. B. C. D.5.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}6.在中,,,,点满足,则等于()A.10 B.9 C.8 D.77.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.8.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()10.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.11.函数在上的大致图象是()A. B.C. D.12.设分别为的三边的中点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,且,则______.14.在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的种子,则取出了带麦锈病种子的概率是_____.15.已知向量,,且,则________.16.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.18.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.19.(12分)已知函数,.(1)当时,求函数的值域;(2),,求实数的取值范围.20.(12分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.21.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.22.(10分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.2、D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).3、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.4、A【解析】
可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.5、A【解析】
解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.6、D【解析】
利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.7、A【解析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.8、C【解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.9、B【解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.10、B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.11、D【解析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.12、B【解析】
根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
数列满足知,数列以3为公比的等比数列,再由已知结合等比数列的性质求得的值即可.【详解】,数列是以3为公比的等比数列,又,,.故答案为:.【点睛】本题考查了等比数列定义,考查了对数的运算性质,考查了等比数列的通项公式,是中档题.14、【解析】
求解占圆柱形容器的的总容积的比例求解即可.【详解】解:由题意可得:取出了带麦锈病种子的概率.故答案为:.【点睛】本题主要考查了体积类的几何概型问题,属于基础题.15、【解析】
根据垂直向量的坐标表示可得出关于实数的等式,即可求得实数的值.【详解】,且,则,解得.故答案为:.【点睛】本题考查利用向量垂直求参数,涉及垂直向量的坐标表示,考查计算能力,属于基础题.16、【解析】
过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【点睛】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)在上单调递减等价于在恒成立,分离参数即可解决.(2)先对求导,化简后根据零点存在性定理判断唯一零点所在区间,构造函数利用基本不等式求解即可.【详解】(1),时,,,∵在上单调递减.∴,.令,,时,;时,,∴在上为减函数,在上为增函数.∴,∴.∴的取值范围为.(2)若,,时,,,令,显然在上为增函数.又,,∴有唯一零点.且,时,,;时,,,∴在上为增函数,在上为减函数.∴.又,∴,,.∴.,.∴当时,.【点睛】此题考查函数定区间上单调,和零点存在性定理等知识点,难点为找到最值后的构造函数求值域,属于较难题目.18、(1);(2)【解析】
(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设(其中)所以,,且,因为,所以,,所以,故或(舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.19、(1);(2).【解析】
(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,,此时,,则;当时,,函数在区间上单调递增,当时,,则.综上,实数的取值范围是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.20、(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题分析:(Ⅰ)由题,所以故,,代入点斜式可得曲线在处的切线方程;(Ⅱ)由题(1)当时,在上单调递增.则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是(Ⅲ)当时,令,则是单调递减函数.因为,,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以由此可证试题解析:(Ⅰ)因为函数,且,所以,所以所以,所以曲线在处的切线方程是,即(Ⅱ)因为函数,所以(1)当时,,所以在上单调递增.所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是(Ⅲ)因为函数,所以所以当时,令,所以是单调递减函数.因为,,所以在上存在,使得,即所以当时,;当时,即当时,;当时,所以在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以因为,所以所以21、(1)(2)见解析,最小值为4【解析】
(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《康复护理普及课程》课件
- 线组长管理心得报告
- 《气象信息分析》课件
- 《急性扁桃体炎》课件
- 《脑出血教学查房》课件
- 通苏嘉甬铁路嘉兴经开段管线迁改工程-500千伏汾翔5829线-汾云5830线迁改工程报告书
- 安全红绿灯系统设计与应用
- 《航天炉工艺介绍》课件
- 员工岗位体系管理办法
- 企业社保管理体系构建与实施
- GB/T 24218.1-2009纺织品非织造布试验方法第1部分:单位面积质量的测定
- GB/T 11032-2020交流无间隙金属氧化物避雷器
- 液化石油气安全标签
- T-CEEMA 004-2022 煤电机组辅机及系统节能、供热和灵活性改造技术导则
- 水车租赁合同范本(3篇)
- 医学康复治疗技术作业治疗课件
- 空港新城特勤消防站施工组织设计
- 餐具消毒记录表
- 2022山东历史高考答题卡word版
- 空军发展历程课件
- 试生产安全条件检查
评论
0/150
提交评论