辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题含解析_第1页
辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题含解析_第2页
辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题含解析_第3页
辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题含解析_第4页
辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市第一七零中学2025届高一下数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式4xA.-∞,-12C.-∞,-322.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于轴对称,则的一个值可能是()A. B. C. D.3.设等比数列的公比,前项和为,则()A. B. C. D.4.已知在角终边上,若,则()A. B.-2 C.2 D.5.若,则()A. B. C.或 D.6.已知数列满足:,,则该数列中满足的项共有()项A. B. C. D.7.方程的解集为()A.B.C.D.8.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.79.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.9010.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的最小值是______.12.在中,角所对边长分别为,若,则的最小值为__________.13.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.14.已知角的终边经过点,若,则______.15.设为等差数列的前n项和,,则________.16.若正实数满足,则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(I)求的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.18.如图,在中,,角的平分线交于点,设,其中.(1)求;(2)若,求的长.19.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.20.已知函数f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求实数k的取值范围;(2)当x∈(m>0,n>0)时,函数g(x)=tf(x)+1(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.21.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

因式分解不等式,可直接求得其解集。【详解】∵4x2-4x-3≤0,∴【点睛】本题考查求不等式解集,属于基础题。2、D【解析】

先求周期,从而求得,再由图象变换求得.【详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【点睛】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.3、C【解析】

利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【详解】因为,所以故选C【点睛】本题考查等比数列的通项公式与前n项和公式,属于基础题。4、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.5、D【解析】

利用诱导公式变形,再化弦为切求解.【详解】由诱导公式化简得,又,所以原式.故选D【点睛】本题考查三角函数的化简求值,考查倍角公式及诱导公式的应用,也考查了化弦为切的思想,属于基础题.6、C【解析】

利用累加法求出数列的通项公式,然后解不等式,得出符合条件的正整数的个数,即可得出结论.【详解】,,,解不等式,即,即,,则或.故选:C.【点睛】本题考查了数列不等式的求解,同时也涉及了利用累加法求数列通项,解题的关键就是求出数列的通项,考查运算求解能力,属于中等题.7、C【解析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【详解】由,根据正切函数图像以及周期可知:,故选:C【点睛】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.8、C【解析】

根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【点睛】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.9、C【解析】

根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.10、C【解析】

根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.12、【解析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.13、【解析】

过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解析】

利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.15、54.【解析】

设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.16、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)平均数74.9,众数75.14,中位数75;(Ш)【解析】

(I)根据频率之和为列方程,结合求出的值.(II)利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III)先计算出从,中分别抽取人和人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【详解】解:(I)依题意得,所以,又,所以.(Ⅱ)平均数为中位数为众数为(Ш)依题意,知分数在的市民抽取了2人,记为,分数在的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:,共28种,其中满足条件的为,共13种,设“至少有1人的分数在”的事件为,则【点睛】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图估计平均数、中位数和众数的方法,考查利用古典概型求概率.属于中档题.18、(1);(2)5.【解析】

(1)根据求出和的值,利用角平分线和二倍角公式求出,即可求出;(2)根据正弦定理求出,的关系,利用向量的夹角公式求出,可得,正弦定理可得答案【详解】解:(1)由,且,,,,则;(2)由正弦定理,得,即,,又,,由上两式解得,又由,得,解得【点睛】本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.19、(1),(2)【解析】

(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【点睛】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求。20、(1)k≤1;(2)(0,1).【解析】试题分析:(1)把f(x)=代入,化简得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在单调递增,所以即,即m,n是关于x的方程tx2-3x+1-t=0的两个不等的正根.由根的分布,可得,解得0<t<1.试题解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即为k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,则g(x)=1,不合题意,∴t>0.又当t>0时,g(x)=-+t+1在上显然是单调增函数,∴即∴m,n是关于x的方程tx2-3x+1-t=0的两个不等的正根.令h(x)=tx2-3x+1-t,则解得0<t<1.∴实数t的取值范围是(0,1).21、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论