版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省赣州市南康中学数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定2.化简:()A. B. C. D.3.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.4.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.5.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.6.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.7.已知圆锥的母线长为8,底面圆周长为,则它的体积是()A. B. C. D.8.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形9.过点的直线的斜率为,则等于()A. B.10 C.2 D.410.若某扇形的弧长为,圆心角为,则该扇形的半径是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简:________12.cos213.若,,则___________.14.当时,不等式成立,则实数k的取值范围是______________.15.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.16.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期及单调递增区间:(2)求函数在区间上的最大值及取最大值时的集合.18.已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.(Ⅰ)当切线PA的长度为时,求点的坐标;(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段长度的最小值.19.不等式的解集为______.20.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.21.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】甲批次的平均数为0.617,乙批次的平均数为0.6132、A【解析】
.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.3、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.4、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.5、B【解析】
由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.6、A【解析】
根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【点睛】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.7、D【解析】
圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.【详解】∵圆锥的底面周长为
∴圆锥的底面半径
双∵圆锥的母线长∴圆锥的高为∴圆锥的体积为故选D.【点睛】本题是基础题,考查计算能力,圆锥的高的求法,熟练掌握公式是解题的关键.8、B【解析】
利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.9、B【解析】
直接应用斜率公式,解方程即可求出的值.【详解】因为过点的直线的斜率为,所以有,故本题选B.【点睛】本题考查了直线斜率公式,考查了数学运算能力.10、D【解析】
由扇形的弧长公式列方程得解.【详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选D【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.12、3【解析】由二倍角公式可得:cos213、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.14、k∈(﹣∞,1]【解析】
此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.15、【解析】
试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.16、【解析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),单调递增区间为;(2)最大值为,取最大值时,的集合为.【解析】
(1)对进行化简转换为正弦函数,可得其最小正周期和递增区间;(2)根据(1)的结果,可得正弦函数的最大值和此时的的集合.【详解】解:(1)∴.增区间为:即单调递增区间为(2)当时,的最大值为,此时,∴取最大值时,的集合为.【点睛】本题考查二倍角公式和辅助角公式以及正弦函数的性质,属于基础题.18、(Ⅰ);(Ⅱ);(Ⅲ)AB有最小值【解析】
试题分析:(Ⅰ)求点的坐标,需列出两个独立条件,根据解方程组解:由点是直线:上的一动点,得,由切线PA的长度为得,解得(Ⅱ)设P(2b,b),先确定圆的方程:因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:,再按b整理:由解得或,所以圆过定点(Ⅲ)先确定直线方程,这可利用两圆公共弦性质解得:由圆方程为及圆:,相减消去x,y平方项得圆方程与圆相交弦AB所在直线方程为:,相交弦长即:,当时,AB有最小值试题解析:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以4分(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:即由,7分解得或,所以圆过定点9分(Ⅲ)因为圆方程为即①圆:,即②②-①得圆方程与圆相交弦AB所在直线方程为:11分点M到直线AB的距离13分相交弦长即:当时,AB有最小值16分考点:圆的切线长,圆的方程,两圆的公共弦方程19、【解析】
根据一元二次不等式的解法直接求解即可.【详解】因为方程的根为:,,所以不等式的解集为.故答案为:.【点睛】本题考查一元二次不等式的解法,考查对基础知识和基本技能的掌握,属于基础题.20、(1)见解析;(2),.【解析】
(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.21、(1);(2).【解析】
(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和为,根据,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业劳动合同法律风险与合规管理案例
- 企业合同管理风险防控策略
- 农产品购销合同范本及风险防范
- 工程师招聘合同范本及法律解析
- 专利调查取证代理协议书
- 拆迁补偿协议书法院受理
- 2025年中山大学孙逸仙纪念医院深汕中心医院放射科影像专科合同医技岗位招聘备考题库及参考答案详解一套
- 家政公合同范本
- 录像合同协议书
- 布行购销合同范本
- 关于支付生活费协议书
- 购买牛饲料合同协议
- 2025年中国两轮电动车行业研究报告
- 椎弓根钉术后护理
- DLT 593-2016 高压开关设备和控制设备
- 现代药物制剂与新药研发知到智慧树章节测试课后答案2024年秋苏州大学
- DB32T 4660-2024 政务服务差评处置工作规范
- 胸腔手术术后并发症
- 2024-2025学年七年级生物上册 第二单元第三、四章 单元测试卷(人教版)
- JT∕T 900-2023 汽车售后维修服务客户满意度评价方法
- GB/Z 3480.22-2024直齿轮和斜齿轮承载能力计算第22部分:微点蚀承载能力计算
评论
0/150
提交评论