版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市铁一中2025届数学高一下期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则2.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要3.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.4.已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若方程()恰有5个不同的实数解,则的取值范围是()A. B. C. D.5.在中,内角,,所对的边分别为,,.若的面积为,则角=()A. B.C. D.6.设向量,且,则实数的值为()A. B. C. D.7.若实数满足约束条件,则的最大值为()A.9 B.7 C.6 D.38.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.29.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.10.在中,,,,则的面积为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______12.一个几何体的三视图如图所示(单位:m),则该几何体的体积为.13.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=14.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是______.15.若集合,,则集合________.16.在中,,,面积为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.18.已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长19.在△中,角、、所对的边分别为、、,且.(1)求的值;(2)若,求的最大值;(3)若,,为的中点,求线段的长度.20.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.21.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.2、C【解析】
由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.3、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.4、C【解析】当时,有,所以,所以函数在上是周期为的函数,从而当时,,有,又,即,有易知为定义在上的偶函数,所以可作出函数的图象与直线有个不同的交点,所以,解得,故选C.点睛:本题主要考查了函数的奇偶性、周期性、对称性,函数与方程等知识的综合应用,着重考查了数形结合思想研究直线与函数图象的交点问题,解答时现讨论得到分段函数的解析式,然后做出函数的图象,将方程恰有5个不同的实数解转化为直线与函数的图象由5个不同的交点,由数形结合法列出不等式组是解答的关键.5、C【解析】
由三角形面积公式,结合所给条件式及余弦定理,即可求得角A.【详解】中,内角,,所对的边分别为,,则由余弦定理可知而由题意可知,代入可得所以化简可得因为所以故选:C【点睛】本题考查了三角形面积公式的应用,余弦定理边角转化的应用,属于基础题.6、D【解析】
根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.7、A【解析】由约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、B【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、B【解析】
根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.10、C【解析】
利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】
根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.12、【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为.考点:本题主要考查三视图及几何体体积的计算.13、65π【解析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。14、【解析】
将所求两条异面直线平移到一起,解三角形求得异面直线所成的角.【详解】连接,根据三角形中位线得到,所以是异面直线与所成角.在三角形中,,所以三角形是等边三角形,故.故填:.【点睛】本小题主要考查异面直线所成的角的求法,考查空间想象能力,属于基础题.15、【解析】由题意,得,,则.16、【解析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2),证明见详解.【解析】
(1)由题意得,在中分别令可求结果;(2)由数列前四项可猜想,运用数学归纳法可证明.【详解】解:(1),当时,,,当时,,,当时,,,所以,,(2)猜想下面用数学归纳法证明:假设时,有成立,则当时,有,故对成立.【点睛】该题考查由数列递推式求数列的项、通项公式,考查数学归纳法,考查学生的运算求解能力.18、(1);(2).【解析】
(1)利用正弦定理化简已知可得:,结合两角和的正弦公式及诱导公式可得:,问题得解.(2)利用可得:,两边平方并结合已知及平面向量数量积的定义即可得解.【详解】解:(1)因为,所以由正弦定理可得,即,因为,所以,,,故.(2)由已知得,所以,所以.【点睛】本题主要考查了正弦定理的应用及两角和的正弦公式,还考查了利用平面向量的数量积解决长度问题,考查转化能力及计算能力,属于中档题.19、(1);(2);(3).【解析】
(1)由三角恒等变换的公式,化简,代入即可求解.(2)在中,由余弦定理,结合基本不等式,求得,即可得到答案.(3)设,在中,由余弦定理,求得,分别在和中,利用余弦定理,列出方程,即可求解.【详解】(1)由题意,在中,,则又由.(2)在中,由余弦定理可得,即,可得,当且仅当等号成立,所以的最大值为.(3)设,如图所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因为,所以,由①+②,可得,即,解得,即.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.
(Ⅱ)由,,能求出数列的前n项和.【详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).21、(1)见解析(2)(3).【解析】
(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文创旅游策划方案
- 2025年大学大四(家具设计与工程)家具市场营销试题及答案
- 2025年高职(建筑电气工程技术)建筑供配电测试卷及答案
- 2025年中职市场营销(市场营销策略)试题及答案
- 2025年中职(物联网技术应用)物联网组网阶段试题及答案
- 2025年大学第三学年(眼视光医学)验光配镜实操试题及答案
- 2025年大学现代农业技术(节水灌溉)试题及答案
- 2025年高职第三学年(数字媒体艺术设计)动画创意设计试题及答案
- 2025年大学(耳鼻咽喉科学)耳鼻咽喉科学基础阶段测试题及解析
- 2025年中职农村新能源开发与利用(新能源利用技术)试题及答案
- 2026年寒假作业实施方案(第二版修订):骐骥驰骋势不可挡【课件】
- (一模)新疆维吾尔自治区2025年普通高考第一次适应性检测 英语试卷(含答案)
- 磷化基础知识
- GB/T 45167-2024熔模铸钢件、镍合金铸件和钴合金铸件表面质量目视检测方法
- 《结直肠癌教学》课件
- 三兄弟分田地宅基地协议书范文
- 地磅施工合同协议书
- 华莱士加盟合同范本
- LYT 2085-2013 森林火灾损失评估技术规范
- 材料样品确认单
- 彝族文化和幼儿园课程结合的研究获奖科研报告
评论
0/150
提交评论