




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西壮族自治区贵港市桂平市高一下数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A.0 B.-1 C.1或0 D.0或-12.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.253.已知,,,则的最小值为A. B. C. D.44.在正项等比数列中,,数列的前项之和为()A. B. C. D.5.若,则下列不等式中不正确的是()A. B. C. D.6.数列的通项公式为,则数列的前100项和().A. B. C. D.7.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,8.化为弧度是A. B. C. D.9.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+210.直线在轴上的截距为()A.2 B.﹣3 C.﹣2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的首项为,公比为,记,则数列的最大项是第___________项.12.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.13.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)14.若,则=_________15.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.16.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.18.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.19.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.20.在中,,.(1)求角B的大小;(2)的面积,求的边BC的长.21.已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列,的通项公式;(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由二倍角公式可得,即,从而分情况求解.【详解】易得,或.
由得.
由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.2、B【解析】
计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,,故选B.【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.3、C【解析】
化简条件得,化简,利用基本不等式,即可求解,得到答案.【详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。5、C【解析】
,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.6、C【解析】
根据通项公式,结合裂项求和法即可求得.【详解】数列的通项公式为,则故选:C.【点睛】本题考查了裂项求和的应用,属于基础题.7、A【解析】
分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.8、D【解析】
由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.9、D【解析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.10、B【解析】
令,求出值则是截距。【详解】直线方程化为斜截式为:,时,,所以,在轴上的截距为-3。【点睛】轴上的截距:即令,求出值;同理轴上的截距:即令,求出值二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.12、【解析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.13、【解析】
先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.14、【解析】
∵,∴∴=1×[+]=1.故答案为:1.15、【解析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.16、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【点睛】本题考查了正弦定理、余弦定理的应用,属基础题.18、(1),;(2),【解析】
(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值.【详解】解:(1)令,解得,即函数的单调递增区间为,(2)由(1)知所以当,即时,当,即时,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.19、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.20、(1);(2)【解析】
(1)由条件可,展开计算代入,即可得;(2)先利用正弦定理求出,再利用面积可得,解方程可得,再利用余弦定理可求得边BC的长.【详解】解:(1)在中,,则,即,整理得,又,,(2)由正弦定理得,又,即,所以,,解得,即.【点睛】本题考查了正弦定理,余弦定理的应用,考查了面积公式,是基础题.21、(Ⅰ)见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疫苗研发的新技术、新材料考核试卷
- 淀粉行业的市场销售与销售管理考核试卷
- 自然资源在幼儿园课程中的有效运用
- 重症医学科护理教学计划
- 臀部塑形操课件
- 2025保险公司借款合同样本
- 2025办公场所租赁合同范本
- 2025装饰合同范文
- 2025建筑工程合同范本3
- 2025YY经济适用房买卖合同
- GB/T 3785.3-2018电声学声级计第3部分:周期试验
- GB/T 28462-2012机织起绒合成革基布
- 接触网工复习题库及答案
- 儿童泌尿道感染(课堂PPT)
- 全国压力容器设计单位名录
- 特变电工-财务报表分析课件
- 人民医院人才队伍建设规划人才队伍建设五年规划
- 一年级语文下册课件-21 小壁虎借尾巴24-部编版(15张PPT)
- 患者随访率低原因分析以及对策
- 计量认证实验室程序文件(全套)
- DGC型瓦斯含量直接测定装置使用说明书
评论
0/150
提交评论