




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏南京市盐城市2025届数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,且,则()A. B. C. D.2.已知直线,直线,若,则直线与的距离为()A. B. C. D.3.已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.其中正确结论的个数是()A.1 B.2 C.3 D.44.已知向量,,,则()A. B. C. D.5.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.6.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.7.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移8.在等差数列中,若,则()A. B. C. D.9.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.1010.已知,成等差数列,成等比数列,则的最小值是A.0 B.1 C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.正方体中,异面直线和所成角的余弦值是________.12.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____13.已知,,则________(用反三角函数表示)14.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____15.已知满足约束条件,则的最大值为__________.16.已知直线:与直线:平行,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.18.已知函数,其中.(1)当时,求的最小值;(2)设函数恰有两个零点,且,求的取值范围.19.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.20.如图,在直棱柱中,,,,分别是棱,上的点,且平面.(1)证明://;(2)求证:.21.如图,边长为2的正方形中.(1)点是的中点,点是的中点,将、分别沿,折起,使,两点重合于点,求证:;(2)当时,将、分别沿,折起,使,两点重合于点,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值2、A【解析】
利用直线平行的性质解得,再由两平行线间的距离求解即可【详解】∵直线l1:ax+2y﹣1=0,直线l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直线l1:1x-2y+1=0,直线l2:1x-2y+3=0,故与的距离为故选A.【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用.3、C【解析】
根据函数最小正周期可求得,由函数图象平移后为奇函数,可求得,即可得函数的解析式.再根据正弦函数的对称性判断①②,利用函数的单调区间判断③,由正弦函数的图象与性质判断④即可.【详解】函数的最小正周期是则,即向右平移个单位可得由为奇函数,可知解得因为所以当时,则对于①,当时,代入解析式可得,即点不为对称中心,所以①错误;对于②,当时带入的解析式可得,所以函数的图象关于直线对称,所以②正确;对于③,的单调递减区间为解得当时,单调递减区间为,而,所以函数在上是减函数,故③正确;对于④,当时,由正弦函数的图像与性质可知,,故④正确.综上可知,正确的为②③④故选:C【点睛】本题考查根据三角函数性质和平移变换求得解析式,再根据正弦函数的图像与性质判断选项,属于基础题.4、D【解析】
利用平面向量垂直的坐标等价条件列等式求出实数的值.【详解】,,,,解得,故选D.【点睛】本题考查向量垂直的坐标表示,解题时将向量垂直转化为两向量的数量积为零来处理,考查计算能力,属于基础题.5、C【解析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.6、D【解析】
在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【点睛】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.7、B【解析】
先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【点睛】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.8、B【解析】
由等差数列的性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.9、B【解析】
点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.10、D【解析】解:∵x,a,b,y成等差数列,x,c,d,y成等比数列根据等差数列和等比数列的性质可知:a+b=x+y,cd=xy,当且仅当x=y时取“=”,二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.12、【解析】
根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。13、【解析】∵,,∴.故答案为14、【解析】
以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.15、57【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.16、4【解析】
利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.18、(1);(2)【解析】
(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;(2)分段讨论讨论函数在相应的区间内的根的个数,函数在时,至多有一个零点,函数在时,可能仅有一个零点,可能有两个零点,分别求出的取值范围,可得解.【详解】(1)当时,函数,当时,,由指数函数的性质,可得函数在上为增函数,且;当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,又由函数,当时,函数取得最小值为;故当时,最小值为.(2)因为函数恰有两个零点,所以(ⅰ)当时,函数有一个零点,令得,因为时,,所以时,函数有一个零点,设零点为且,此时需函数在时也恰有一个零点,令,即,得,令,设,,因为,所以,,,当时,,所以,即,所以在上单调递增;当时,,所以,即,所以在上单调递减;而当时,,又时,,所以要使在时恰有一个零点,则需,要使函数恰有两个零点,且,设在时的零点为,则需,而当时,,所以当时,函数恰有两个零点,并且满足;(ⅱ)若当时,函数没有零点,函数在恰有两个零点,且满足,也符合题意,而由(ⅰ)可得,要使当时,函数没有零点,则,要使函数在恰有两个零点,则,但不能满足,所以没有的范围满足当时,函数没有零点,函数在恰有两个零点,且满足,综上可得:实数的取值范围为.故得解.【点睛】本题主要考查了指数函数与二次函数的图象与性质的应用,以及函数与方程,函数的零点问题的综合应用,属于难度题,关键在于分析分段函数在相应的区间内的单调性,以及其图像趋势,可运用数形结合方便求解,注意在讨论二次函数的根的情况时的定义域对其的影响.19、(1)见证明;(2)【解析】
(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.20、(1)证明见解析;(2)证明见解析.【解析】
(1)利用线面平行的性质定理可得,从而得到.(2)连接,可证平面,从而得到.【详解】(1)因为平面,平面,平面平面,所以.又在直棱柱中,有,所以.(2)连接,因为棱柱为直棱柱,所以平面,又平面,所以.又因为,平面,平面,,所以平面.又平面,所以.在直棱柱中,有四边形为平行四边形.又因为,所以四边形为菱形,所以.又,平面,平面,所以平面,又平面,所以.【点睛】线线平行的证明,有如下途径:(1)利用平面几何的知识,如三角形的中位线、梯形的中位线等;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)线面垂直的性质定理(同垂直一个平面的两条直线平行).而线线垂直的证明,有如下途径:(1)利用平面几何的知识,如勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025店铺转让合同协议书范本下载
- 上海中学高三数学试卷及答案大全
- 肇庆市实验中学高中历史二教案:第课改变世界的工业革命教案
- 2025科技咨询合同示范文本
- 机械产品标准化与模块化考核试卷
- 科技创新趋势的智能家居和智能穿戴设备市场考核试卷
- 编织品在建筑工程中的加固应用考核试卷
- 无线数据传输考核试卷
- 煤炭转化与化工产品高端化发展考核试卷
- 今日会计考试试题及答案
- 装配作业指导书
- 建设工程成本计划与控制课件(原)
- IPC-A-610国际标准中英文对照(doc 17)
- 《陕文投应聘表格》word版
- 建设工程围挡标准化管理图集(2022年版)
- (完整word版)中小学教育质量综合评价指标框架(试行)
- 《新概念英语》第一册单词表
- 半泽直树日语字幕台词(一)
- 最新中建CI报价单-2013.
- 拌和站地基承载力及抗倾覆计算书
- 最新公司客户订单流程管理制度
评论
0/150
提交评论