高中数学人教B版必修二《棱柱、棱锥和棱台的结构特征》学案_第1页
高中数学人教B版必修二《棱柱、棱锥和棱台的结构特征》学案_第2页
高中数学人教B版必修二《棱柱、棱锥和棱台的结构特征》学案_第3页
高中数学人教B版必修二《棱柱、棱锥和棱台的结构特征》学案_第4页
高中数学人教B版必修二《棱柱、棱锥和棱台的结构特征》学案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1.2棱柱、棱锥和棱台的结构特征自主学习学习目标1.了解和认识多面体、棱柱、棱锥、棱台的结构特征,加深对几种几何体的概念及性质的理解.2.了解凸多面体和平行六面体等的概念.3.掌握棱锥、棱台平行于底面的截面的性质.自学导引1.棱柱(1)棱柱的主要特征性质:①________________________;②其余每相邻两个面的交线都互相平行.(2)棱柱的______________叫做棱柱的底面,__________叫做棱柱的侧面,______________________叫做棱柱的侧棱,________________________叫做棱柱的高.(3)棱柱的分类:①棱柱按底面分是三角形、四边形、五边形…分别叫做三棱柱、四棱柱、五棱柱….②棱柱又分为斜棱柱和直棱柱:侧棱与底面__________的棱柱叫做斜棱柱,侧棱与底面________的棱柱叫做直棱柱,底面是______________的直棱柱叫做正棱柱.(4)特殊四棱柱:底面是______________的棱柱叫做平行六面体,__________________的平行六面体叫做直平行六面体,底面是______________的直平行六面体是长方体,________________的长方体是正方体.2.棱锥(1)棱锥的主要结构特征:①有一个面是______________;②其余各面都是__________________的三角形.(2)棱锥中________________________,叫做棱锥的侧面;______________________叫做棱锥的顶点;________________________叫做棱锥的侧棱;__________叫做棱锥的底面;______________________叫做棱锥的高.(3)如果棱锥的底面是__________,且它的顶点在过底面中心且与底面垂直的__________,则这个棱锥叫做正棱锥.正棱锥各侧面都是____________________,它们底边上的高叫做棱锥的斜高.3.棱台(1)棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.________________________分别叫做棱台的上下底面;其他各面叫做棱台的________;________________________叫做棱台的侧棱;__________________叫做棱台的高.(2)由__________截得的棱台叫做正棱台.(3)正棱台各侧面都是__________________,这些等腰梯形的高叫做棱台的________.对点讲练知识点一理解棱柱、棱锥、棱台定义和性质例1下列概念判断不正确的有________.(填序号)①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱.②四棱锥的四个侧面都可以是直角三角形.③有两个面互相平行,其余各面都是梯形的多面体是棱台.点评对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.变式训练1下列命题正确的是()A.斜棱柱的侧棱有时垂直于底面B.正棱柱的高可以与侧棱不相等C.六个面都是矩形的六面体是长方体D.底面是正多边形的棱柱为正棱柱知识点二几何体的结构特征例2如图是三个几何体的表面展开图,请问各是什么几何体?点评解此类问题应结合常见的几何体的定义和结构特征,进行空间想象或亲自动手,制作表面展开图进行实践.变式训练2如图所示,小明设计了某个产品的包装盒,他少设计了其中的一部分,请你把它补上,使其成为两边均有盖的正方体盒子.你有几种弥补的办法?任意画出一种成功的设计图.知识点三多面体中有关元素的计算例3如图所示,正四棱台AC′的高为17cm,两底面的边长分别为4cm和16cm,求这个棱台的侧棱和斜高.点评关于正棱台的计算问题.解决问题的关键是:(1)棱台的高.尽管棱台的高是上、下两底面之间的距离,但正棱台的上、下两底面中心的连线就是棱台的高;(2)正棱台的斜高就是侧面(等腰梯形)的高.要明白该梯形的上、下中点的连线就是斜高.(3)解题时要注意两个直角梯形,即:直角梯形OBB′O′和OEE′O′,计算问题都可以在这两个梯形中进行,我们以后要熟练掌握.变式训练3正四棱锥P—ABCD的底面边长为a,高PO为h,求它的侧棱PA的长和斜高PE.一、知识结构梳理二、几种特殊四棱柱的特征和性质(见下表)名称平行六面体直平行六面体长方体正方体结构特征底面是平行四边形的棱柱侧棱与底面垂直的平行六面体底面是矩形的直平行六面体棱长都相等的长方体特殊的性质底面和侧面都是平行四边形侧棱垂直于底面,各侧面都是矩形底面和侧面都是矩形棱长都相等,各面都是正方形1.长方体一条对角线的长的平方等于一个顶点上三条棱的长的平方和,即l2=a2+b2+c2.其中l是长方体的对角线长,a,b,c是长方体的三边长.2.对于正棱锥和正棱台,要注意准确理解概念,把握图形的特征,尤其是图中的一些重要的直角三角形和直角梯形.3.棱台是由棱锥截得的,在处理与棱台有关的问题时要注意联系棱锥的有关性质,“还台为锥”是常用的解题方法和策略.课时作业一、选择题1.有四个集合:A={棱柱},B={四棱柱},C={长方体},D={正方体},它们之间的包含关系是()A.CDAB B.DCBAC.CADB D.BDCA2.下列说法正确的是()A.棱柱的侧面都是矩形B.棱柱的侧棱不全相等C.棱柱是有两个面互相平行,其余各面都是四边形的几何体D.棱柱的几何体中至少有两个面平行3.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是()A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥4.设有四个命题甲:有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;乙:有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;丙:用一个面去截棱锥,底面与截面之间的部分叫棱台;丁:侧面都是长方形的棱柱叫长方体.其中,真命题的个数是()A.0 B.1 C.2 D.35.有一个正三棱锥和一个正四棱锥,它们所有的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,则所得到的这个组合体是()A.底面为平行四边形的四棱柱B.五棱锥C.无平行平面的六面体D.斜三棱柱题号12345答案二、填空题6.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.7.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是______.8.在下面4个平面图形中,哪几个是下面各侧棱都相等的四面体的展开图?其序号是________.(把你认为正确的序号都填上)三、解答题9.如图,请设计辅助线,沿辅助线翻折,使正三角形折成(1)正四面体;(2)正三棱柱.10.如图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为eq\r(29),设这条最短路线与CC1的交点为N,求:(1)设三棱柱的侧面展开图的对角线长;(2)PC与NC的长.【答案解析】自学导引1.(1)①有两个互相平行的面(2)互相平行的面其余各面两侧面的公共边两底面之间的距离(3)②不垂直垂直正多边形(4)平行四边形侧棱与底面垂直矩形棱长都相等2.(1)①多边形②有一个公共顶点(2)有公共顶点的各三角形各侧面的公共顶点相邻两侧面的公共边多边形顶点到底面的距离(3)正多边形直线上全等的等腰三角形3.(1)原棱锥的底面和截面侧面相邻两侧面的公共边两底面间的距离(2)正棱锥(3)全等的等腰梯形斜高对点讲练例1①③解析理由:(1)有两个面平行,其余各面是平行四边形,但不一定是棱柱,如图①.(2)在四棱锥P—ABCD中,若PD⊥平面ABCD,而四边形ABCD为矩形,则可证明其四边侧面都是直角三角形,如图②.(3)存在满足有两个面平行,其余各面是梯形,但不是棱台的图形,如图③.变式训练1C[四个侧面都是矩形的棱柱是直平行六面体,两个底面是矩形的直平行六面体是长方体,故正确答案为C.]例2解①五棱柱②五棱锥③三棱台如图所示.变式训练2解共有4种,设计如图(画出其中一种即可).例3解设棱台两底面的中心分别为O′和O,B′C′和BC的中点分别为E′和E.连接O′O、E′E、O′B′、OB、O′E′、OE,则OBB′O′和OEE′O′都是直角梯形.因为A′B′=4cm,AB=16cm,所以O′E′=2cm,OE=8cm,O′B′=2eq\OB=8eq\r(2)cm.因此B′B=eq\r(OO′2+OB-O′B′2)=eq\r(172+8\r(2)-2\r(2)2)=19cm,EE′=eq\r(OO′2+OE-O′E′2)=eq\r(172+8-22)=5eq\r(13)cm.即这个棱台的侧棱长为19cm,斜高为5eq\变式训练3解∵正四棱锥的底面边长为a,∴AO=eq\f(\r(2),2)a,∴在Rt△PAO中,PA=eq\r(PO2+AO2)=eq\r(h2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)a))2)=eq\f(\r(2),2)eq\r(a2+2h2).∵OE=eq\f(1,2)a,∴在Rt△POE中,斜高PE=eq\r(PO2+OE2)=eq\r(h2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2)))2)=eq\f(1,2)eq\r(a2+4h2).即此正四棱锥的侧棱长为eq\f(\r(2),2)eq\r(a2+2h2),斜高为eq\f(1,2)eq\r(a2+4h2).课时作业1.B2.D3.D[如图所示,正六边形ABCDEF中,OA=OB=…=AB,那么正六棱锥S-ABCDEF中,SA>OA=AB,即侧棱长大于底面边长.]4.A5.D6.127.四棱柱8.①②9.解(1)如图①,取各边中点可折成正四面体.(2)如图②,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边为三角形边长的eq\f(1,4).有一组对角为直角,余下部分按虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形,恰可拼成这个正三棱柱的上底.10.解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论