




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市古城中学2025届高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图像上所有的点向左平移个单位长度,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数的图像,则在区间上的最小值为()A. B. C. D.2.已知则的最小值是()A. B.4 C. D.53.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.4.若函数在一个周期内的图象如图所示,且在轴上的截距为,分别是这段图象的最高点和最低点,则在方向上的投影为()A. B. C. D.5.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.C.绕直角三角形的一边旋转所形成的几何体叫圆锥.D.用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.6.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为()A. B. C. D.7.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获8.下列结论正确的是()A. B.若,则C.当且时, D.9.已知是单位向量,.若向量满足()A. B.C. D.10.已知,,,则a,b,c的大小关系为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知{}是等差数列,是它的前项和,且,则____.12.已知函数(,)的部分图像如图所示,则函数解析式为_______.13.已知为等差数列,,前n项和取得最大值时n的值为___________.14.数列满足:,,则______.15.计算:__________.16.函数的定义域是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,,.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知数列满足,.(1)求数列的通项公式;(2)当时,证明不等式:.19.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.20.已知.(1)求函数的最小正周期;(2)求函数在闭区间上的最小值并求当取最小值时,的取值.21.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先按照图像变换的知识求得的解析式,然后根据三角函数求最值的方法,求得在上的最小值.【详解】图像上所有的点向左平移个单位长度得到,把所得图像上各点的横坐标伸长到原来的倍(纵坐标不变)得到,由得,故在区间上的最小值为.故选A.【点睛】本小题主要考查三角函数图像变换,考查三角函数值域的求法,属于基础题.2、C【解析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.3、A【解析】
求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.4、D【解析】
根据图象求出函数的解析式,然后求出点的坐标,进而可得所求结果.【详解】根据函数在一个周期内的图象,可得,∴.再根据五点法作图可得,∴,∴函数的解析式为.∵该函数在y轴上的截距为,∴,∴,故函数的解析式为.∴,∴,又,∴向量在方向上的投影为.故选D.【点睛】解答本题的关键有两个:一是正确求出函数的解析式,进而得到两点的坐标,此处要灵活运用“五点法”求出的值;二是注意一个向量在另一个向量方向上的投影的概念,属于基础题.5、B【解析】
根据课本中的相关概念依次判断选项即可.【详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为B.【点睛】这个题目考查了几何体的基本概念,属于基础题.6、B【解析】
记三名男生为,两名女生为,分别列举出基本事件,得出基本事件总数和恰有1名女生当选包含的基本事件个数,即可得解.【详解】记三名男生为,两名女生为,任选2名所有可能情况为,共10种,恰有一名女生的情况为,共6种,所以恰有1名女生当选的概率为.故选:B【点睛】此题考查根据古典概型求概率,关键在于准确计算出基本事件总数,和某一事件包含的基本事件个数.7、B【解析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.8、D【解析】
利用不等式的性质进行分析,对错误的命题可以举反例说明.【详解】当时,A不正确;,则,B错误;当时,,,C错误;由不等式的性质正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键.可通过反例说明命题错误.9、A【解析】
因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.10、D【解析】
由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.12、y=sin(2x+).【解析】
由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值答案可求【详解】根据函数y=sin(ωx+φ)(ω>0,0<φ)的部分图象,可得A=1,•,∴ω=2,再结合五点法作图可得2•φ=π,∴φ,则函数解析式为y=sin(2x+)故答案为:y=sin(2x+).【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值难度中档.13、20【解析】
先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.14、【解析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题15、【解析】
分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.16、.【解析】
由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用等差数列的性质可求出,进而可求出的通项公式;(2),由裂项相消求和法可求出.【详解】解:(1)设等差数列的公差为,则.因为所以,解得,,所以数列的通项公式为.(2)由题意知,所以.【点睛】本题考查了等差数列的通项公式的求法,考查了利用裂项相消求数列的前项和,属于基础题.18、(1);(2)见解析.【解析】
(1)分和两种情况讨论,利用,可得出数列的通项公式;(2)由得,从而可得,即可证明出结论.【详解】(1),,.①当时,数列是各项均为的常数列,则;②当时,数列是以为首项,以为公比的等比数列,,.当时,也适合.综上所述,;(2)由,得,,,,因此,.【点睛】本题考查数列的通项,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【点睛】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.20、(1);(2),【解析】
(1)先化简,再求最小正周期;(2)由,得,再结合的函数图像求最小值.【详解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以当时,的最小值为,即时,的最小值为.【点睛】本题考查三角恒等变换,考查三角函数图像的性质应用,属于中档题.21、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面.因为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新规则碰撞测试题及答案
- 如何针对信息系统项目管理师考试制定个性化复习计划试题及答案
- 2025年新媒体传播专业考试试题及答案
- 山东教师考试试题及答案
- 福建会考地理试题及答案
- 环境科学与管理知识点详解及练习题集
- 强化练习软件设计师试题及答案集合
- 赋权与公共政策创新试题及答案
- 西方政治制度中的创新生态环境研究试题及答案
- 机电工程后的未来科技探索的试题及答案
- 2024年江苏省南京市江北新区葛塘街道招聘40人历年管理单位遴选500模拟题附带答案详解
- 宜宾学院《软件需求工程》2022-2023学年第一学期期末试卷
- 食材配送服务方案投标文件(技术方案)
- 天使投资正规合同范例
- GB/T 44736-2024野生动物保护繁育象
- 中医适宜技术-中药热奄包
- 《篮球原地运球》教案 (共三篇)
- 危急值管理课件
- 期中(试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 新《劳动合同法》知识学习考试题库200题(含答案)
- 四川省巴中市2023-2024学年七年级下学期期末生物试题
评论
0/150
提交评论