2025届甘肃省岷县一中数学高一下期末综合测试试题含解析_第1页
2025届甘肃省岷县一中数学高一下期末综合测试试题含解析_第2页
2025届甘肃省岷县一中数学高一下期末综合测试试题含解析_第3页
2025届甘肃省岷县一中数学高一下期末综合测试试题含解析_第4页
2025届甘肃省岷县一中数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省岷县一中数学高一下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.92.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.3.已知集合,,则()A. B. C. D.4.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1485.若,,则与向量同向的单位向量是()A. B. C. D.6.设满足约束条件,则的最小值为()A.3 B.4 C.5 D.107.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.38.如图,函数的图像是()A. B.C. D.9.在锐角中,角,,所对的边分别为,,,边上的高,且,则等于()A. B. C. D.10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为()A.54 B. C.90 D.81二、填空题:本大题共6小题,每小题5分,共30分。11.若,则满足的的取值范围为______________;12.已知呈线性相关的变量,之间的关系如下表所示:由表中数据,得到线性回归方程,由此估计当为时,的值为______.13.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.14.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.15.已知,则___________.16.若在上是减函数,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;18.下表中的数据是一次阶段性考试某班的数学、物理原始成绩:用这44人的两科成绩制作如下散点图:学号为22号的同学由于严重感冒导致物理考试发挥失常,学号为31号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将两同学的成绩(对应于图中两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩与物理成绩的相关系数为,回归直线(如图所示)的方程为.(1)若不剔除两同学的数据,用全部44人的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置;(2)如果同学参加了这次物理考试,估计同学的物理分数(精确到个位);(3)就这次考试而言,学号为16号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).19.设,求函数的最小值为__________.20.若,讨论关于x的方程在上的解的个数.21.已知数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【详解】且,使得成立的最小正整数故选:【点睛】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.2、B【解析】

根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题。3、A【解析】

先分别求出集合,,由此能求出.【详解】集合,,1,,或,,,.故选:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4、C【解析】

可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【详解】解:∵在数列中,,

,即数列为公差为−4的等差数列,

令可得,

∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,

∴数列的前8或9项和最大,

由求和公式可得

故选:C.【点睛】本题考查等差数列的求和公式和等差数列的判定,属基础题.5、A【解析】

先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题6、B【解析】

结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7、D【解析】

先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.8、B【解析】

根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【点睛】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.9、A【解析】

在中得到,,在中得到,利用面积公式计算得到.【详解】如图所示:在中:,根据勾股定理得到在中:利用勾股定理得到,故故选A【点睛】本题考查了勾股定理,面积公式,意在考查学生解决问题的能力.10、A【解析】

由已知中的三视图可得:该几何体是一个以正方形为底面的斜四棱柱,进而得到答案.【详解】由三视图可知,该多面体是一个以正方形为底面的斜四棱柱,四棱柱的底面是边长为3的正方形,四棱柱的高为6,则该多面体的体积为.故选:A.【点睛】本题考查三视图知识及几何体体积的计算,根据三视图判断几何体的形状,再由几何体体积公式求解,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【点睛】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.12、【解析】由表格得,又线性回归直线过点,则,即,令,得.点睛:本题考查线性回归方程的求法和应用;求线性回归方程是常考的基础题型,其主要考查线性回归方程一定经过样本点的中心,一定要注意这一点,如本题中利用线性回归直线过中心点求出的值.13、1【解析】

利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.14、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.15、;【解析】

把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.16、【解析】

化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得到的奇数项成等差数列,的偶数项也成等差数列,根据单调递增列出关于的不等式,求解出范围即可.【详解】(1)设,所以,所以,所以,所以;(2)因为,所以,所以,又因为,所以,当为奇数时,,当为偶数时,,因为单调递增,所以,所以,所以.【点睛】本题考查等差数列的基本量求解以及根据数列的单调性求解参数范围,难度一般.(1)已知数列的类型和数列的递推公式求解数列通项公式时,可采用设出数列通项公式的形式,然后根据递推关系求解出数列通项公式中的基本量;(2)数列的单调性可通过与的大小关系来判断.18、(1),理由见解析(2)81(3)【解析】

(1)不剔除两同学的数据,44个数据会使回归效果变差,从而得到,描出回归直线即可;(2)将x=125代入回归直线方程,即可得到答案;(3)利用题目给出的标准分计算公式进行计算即可得到结论.【详解】(1),说明理由可以是:①离群点A,B会降低变量间的线性关联程度;②44个数据点与回归直线的总偏差更大,回归效果更差,所以相关系数更小;③42个数据点与回归直线的总偏差更小,回归效果更好,所以相关系数更大;④42个数据点更加贴近回归直线;⑤44个数据点与回归直线更离散,或其他言之有理的理由均可.要点:直线斜率须大于0且小于的斜率,具体为止稍有出入没关系,无需说明理由.(2)令,代入得所以,估计同学的物理分数大约为分.(3)由表中知同学的数学原始分为122,物理原始分为82,数学标准分为物理标准分为,故同学物理成绩比数学成绩要好一些.【点睛】本题考查散点图和线性回归方程的简单应用,考查数据处理与数学应用能力.19、9【解析】试题分析:本题解题的关键在于关注分母,充分运用发散性思维,经过同解变形构造基本不等式,从而求出最小值.试题解析:由得,则当且仅当时,上式取“=”,所以.考点:基本不等式;构造思想和发散性思维.20、答案不唯一,见解析【解析】

首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.21、(1);(2).【解析】

(1)由递推公式,再递推一步,得,两式相减化简得,可以判断数列是等差数列,进而可以求出等差数列的通项公式;(2)根据(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论