版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏回族自治区银川市兴庆区宁一中2025届高一数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.2.数列1,,,…,的前n项和为A. B. C. D.3.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.404.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或75.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}6.已知圆柱的侧面展开图是一个边长为的正方形,则这个圆柱的体积是()A. B. C. D.7.已知向量,则下列结论正确的是A. B. C.与垂直 D.8.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.609.已知直线,与互相垂直,则的值是()A. B.或 C. D.或10.为了得到函数y=sin(2x-πA.向右平移π6个单位 B.向右平移πC.向左平移π6个单位 D.向左平移π二、填空题:本大题共6小题,每小题5分,共30分。11.________.12.函数在的递减区间是__________13.已知,,则当最大时,________.14.已知,则的值为_____________15.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.16.已知向量,,若,则实数___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和.(1)求数列通项公式;(2)令,求数列的前n项和.18.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.19.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.20.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?21.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.2、B【解析】
数列为,则所以前n项和为.故选B3、B【解析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.4、A【解析】
根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.5、C【解析】
根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.6、A【解析】
由已知易得圆柱的高为,底面圆周长为,求出半径进而求得底面圆半径即可求出圆柱体积。【详解】底面圆周长,,所以故选:A【点睛】此题考查圆柱的侧面展开为长方形,长为底面圆周长,宽为圆柱高,属于简单题目。7、C【解析】
可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.8、B【解析】
由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.9、B【解析】
根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.10、A【解析】
根据函数平移变换的方法,由2x→2x-π3即2x→2(x-π【详解】根据函数平移变换,由y=sin2x变换为只需将y=sin2x的图象向右平移π6【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.13、【解析】
根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【详解】故可得则当且仅当,即时,此时有故答案为:.【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.14、【解析】
利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【详解】由得,,,两式相除得,,则.【点睛】本题主要考查和差化积公式以及二倍角公式的应用.15、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】16、【解析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据和关系得到答案.(2)首先计算数列通项,再根据裂项求和得到答案.【详解】解:(1)当时,当时,(2)【点睛】本题考查了和关系,裂项求和,是数列的常考题型.18、(1);(2).【解析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.19、(1),;(2).【解析】
(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【点睛】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。20、(1)312(2)【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,,然后利用导数求其最值.试题解析:解:(1)由PO1=2知OO1=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积正四棱柱ABCD-A1B1C1D1的体积所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V是单调增函数;当时,,V是单调减函数.故时,V取得极大值,也是最大值.因此,当m时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际标准舞考级协议
- 建筑工人肌肉骨骼疾病中医干预效果
- 康复医学论文查重策略
- 应急物资管理技术前沿与发展趋势
- 并发症预防的营养管理策略
- 干细胞治疗AI伦理审查框架
- 干眼屈光术后泪膜重建的综合策略
- 干旱水源性疾病监测策略的迭代更新
- 寺庙保安安全要点培训课件
- 屈光术后角膜层间上皮植入接触镜方案
- DBJ-T 15-38-2019 建筑地基处理技术规范
- 河道清四乱培训课件
- 贾谊《过秦论》-古诗
- 工地治安安全保卫制度范本
- 河南省郑州市2023年高中毕业年级第三次质量预测语文试题卷()
- 单井压裂应急预案
- 推进教育信息化助力振兴乡村教育
- 《中医学》第七章 防治原则与治法
- 领导科学与艺术复习资料
- 学术道德学术规范(答案)
- 酱牛肉制品加工工艺流程图
评论
0/150
提交评论