2025届深圳市第二高级中学数学高一下期末检测模拟试题含解析_第1页
2025届深圳市第二高级中学数学高一下期末检测模拟试题含解析_第2页
2025届深圳市第二高级中学数学高一下期末检测模拟试题含解析_第3页
2025届深圳市第二高级中学数学高一下期末检测模拟试题含解析_第4页
2025届深圳市第二高级中学数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届深圳市第二高级中学数学高一下期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的简图是()A. B. C. D.2.在等比数列中,,,,则等于()A. B. C. D.3.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.4.米勒问题,是指德国数学家米勒1471年向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即可见角最大?)米勒问题的数学模型如下:如图,设是锐角的一边上的两定点,点是边边上的一动点,则当且仅当的外接圆与边相切时,最大.若,点在轴上,则当最大时,点的坐标为()A. B.C. D.5.若,则等于()A. B. C. D.6.若是等差数列,则下列数列中也成等差数列的是()A. B. C. D.7.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.8.已知之间的几组数据如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.9.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.10.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________12.已知点是所在平面内的一点,若,则__________.13.已知直线平分圆的周长,则实数________.14.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.15.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.16.等差数列满足,则其公差为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.18.在中,内角对边分别为,,,已知.(1)求的值;(2)若,,求的面积.19.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.20.如图,在四棱锥中,,且,,,点在上,且.(1)求证:平面⊥平面;(2)求证:直线∥平面.21.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.2、C【解析】

直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.3、B【解析】

先由角的终边过点,求出,再由二倍角公式,即可得出结果.【详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.4、A【解析】

设点的坐标为,求出线段的中垂线与线段的中垂线交点的横坐标,即可得到的外接圆圆心的横坐标,由的外接圆与边相切于点,可知的外接圆圆心的横坐标与点的横坐标相等,即可得到点的坐标.【详解】由于点是边边上的一动点,且点在轴上,故设点的坐标为;由于,则直线的方程为:,点为直线与轴的交点,故点的坐标为;由于为锐角,点是边边上的一动点,故;所以线段的中垂线方程为:;线段的中垂线方程为:;故的外接圆的圆心为直线与直线的交点,联立,解得:;即的外接圆圆心的横坐标为的外接圆与边相切于点,边在轴上,则的外接圆圆心的横坐标与点的横坐标相等,即,解得:或(舍)所以点的坐标为;故答案选A【点睛】本题考查直线方程、三角形外接圆圆心的求解,属于中档题5、B【解析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.6、C【解析】

根据等差数列的定义,只需任意相邻的后一项与前一项的差为定值即可.【详解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:==与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D:当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C【点睛】本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.7、C【解析】

试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C8、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′9、C【解析】

先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.10、A【解析】

根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】

利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.12、【解析】

设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.13、1【解析】

由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】

由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【点睛】本题主要考查余弦定理以及韦达定理,属于中档题.15、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.16、【解析】

首先根据等差数列的性质得到,再根据即可得到公差的值.【详解】,解得.,所以.故答案为:【点睛】本题主要考查等差数列的性质,熟记公式为解题的关键,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当m<2时,曲线C表示圆(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴当m<2时,曲线C表示圆;(2)圆C的圆心坐标为(﹣1,﹣2),半径为.∵直线l:y=x﹣m与圆C相切,∴,解得:m=±3,满足m<2.∴m=±3.【点评】本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.18、(1)2(2)【解析】

(1)在题干等式中利用边化角思想,结合两角和的正弦公式、内角和定理以及诱导公式计算出,再利用角化边的思想可得出的比值;(2)由(1)中的结果,结合余弦定理求出和的值,再利用同角三角函数的平方关系求出,最后利用三角形的面积公式求出的面积.【详解】(1)由正弦定理得,则,所以,即,化简可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因为,且所以因此.【点睛】在解三角形的问题时,要根据已知元素的类型合理选择正弦定理与余弦定理解三角形,除此之外,在有边和角的等式中,优先边化角,利用三角恒等变换思想化简求解,能起到简化计算的作用.19、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【点睛】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.20、(1)见解析;(2)见解析【解析】

(1)通过边长关系可知,所以,又,所以平面,所以平面平面.(2)连接交与点,连接,易得∽,所以,所以直线平面.,【详解】(1)因为,,所以,所以又,且,平面,平面所以平面又平面所以平面平面(2)连接交与点,连接在四边形中,,∽,所以又,即所以又直线平面,直线平面所以直线平面【点睛】(1)证明面面垂直:先正线面垂直,线又属于另一个面,即可证明面面垂直.(2)证明线面平行,在面内找一个线与已知直线平行即可.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论