版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【首发】山东省郓城县2023-2024学年中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;142.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是()A. B. C. D.3.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.cm C.10cm D.cm4.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或126.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD.入口K位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C7.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A. B. C. D.8.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.9.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30° B.60° C.90° D.45°10.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变二、填空题(共7小题,每小题3分,满分21分)11.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.11115,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币.平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.12.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=cm.14.比较大小:_____1.15.若,则=.16.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.17.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.三、解答题(共7小题,满分69分)18.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长19.(5分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,再求值:()+,其中a=﹣2+.20.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?21.(10分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)22.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.23.(12分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?24.(14分)先化简,再求值:,其中.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.2、C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.3、C【解析】
圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【详解】设母线长为R,则圆锥的侧面积==10π,∴R=10cm,故选C.【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.4、C【解析】熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.5、C【解析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.6、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A.A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B.C→A→O→B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C.D→O→C,园丁与入口的距离逐渐增大,不符合;D.O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.7、B【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.8、A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.9、B【解析】【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.【详解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所对的圆周角是圆心角的一半),故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、D【解析】
作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(共7小题,每小题3分,满分21分)11、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人=21元.12、1.【解析】
设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,,解得,则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.13、1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14、【解析】
先将1化为根号的形式,根据被开方数越大值越大即可求解.【详解】解:,,,故答案为>.【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.15、1.【解析】试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.考点:二次根式有意义的条件.16、10或1【解析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,,当水位上升到圆心以下时
水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.17、x>﹣1.【解析】
根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式
3x+b>ax-3的解集.【详解】解:∵函数y=3x+b和y=ax-3的图象交于点P(-1,-5),∴不等式
3x+b>ax-3的解集是x>-1,故答案为:x>-1.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.三、解答题(共7小题,满分69分)18、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【解析】
(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.19、(1)-1;(2).【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=当a=﹣2+时,原式==.【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20、200名初中毕业生的视力情况200600.05【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.21、海里【解析】
过点P作,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.【详解】解:如图,过点P作,垂足为点C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此时轮船所在的B处与灯塔P的距离是海里.【点睛】解一般三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 28889-2012复合材料面内剪切性能试验方法》专题研究报告
- 《GBT 20944.3-2008纺织品 抗菌性能的评价 第3部分:振荡法》专题研究报告
- 《GBT 9978.7-2008建筑构件耐火试验方法 第7部分:柱的特殊要求》专题研究报告
- 道路安全培训通讯稿课件
- 道路保通安全知识培训课件
- 道路交通安全教学课件
- 道路交通安全培训学习课件
- 2025-2026年人教版七年级数学上册期末试题(附答案)
- 2026年甘肃平凉市高职单招英语题库试题附答案
- 2026年广东省辅警人员招聘考试题库含答案
- 2024-2025学年河南省南阳市社旗县九年级(上)期末英语试卷(含答案)
- 山东省泰安市泰山区2024-2025学年五年级上学期期末英语试题
- 挤塑机工操作规程(4篇)
- 陕西省咸阳市秦都区2024-2025学年七年级上学期1月期末考试语文试卷(无答案)
- AI虚拟数字人教学课件 第5章 腾讯智影:生成数字人视频与主播
- CJJT269-2017城市综合地下管线信息系统技术规范正式版
- 环保局基础知识考试题库100道及答案解析
- 道闸施工方案
- 适用于新高考新教材天津专版2024届高考英语一轮总复习写作专项提升Step3变魔句-提升描写逼真情境能力课件外研版
- 脚手架稳定性计算
- DB31T+598-2023政府质量奖个人评价准则
评论
0/150
提交评论