




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏拉萨中学2025届数学高一下期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(卷号)2397643038875648(题号)2398229448728576(题文)已知直线、,平面、,给出下列命题:①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.其中正确的命题是()A.①② B.③④ C.①④ D.②③2.若,则的最小值为()A. B. C.3 D.23.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元4.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.5.设,若关于的不等式在区间上有解,则()A. B. C. D.6.已知圆与直线切于点,则直线的方程为()A. B. C. D.7.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球8.甲、乙两队准备进行一场篮球赛,根据以往的经验甲队获胜的概率是,两队打平的概率是,则这次比赛乙队不输的概率是()A.- B. C. D.9.在中,内角所对的边分别为,且,则()A. B. C. D.10.从数字0,1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则______.12.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.13.已知为锐角,,则________.14.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.15.已知,,,,则________.16.不等式的解集是_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)18.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄人数②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.19.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.20.等差数列的前项和为,求数列前项和.21.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
逐一判断各命题的正误,可得出结论.【详解】对于命题①,若,,且,则,该命题正确;对于命题②,若,,且,则与平行或相交,该命题错误;对于命题③,若,,且,则与平行、垂直或斜交,该命题错误;对于命题④,若,,且,则,该命题正确.故选:C.【点睛】本题考查线面、面面位置关系有关命题真假的判断,在判断时,可充分利用线面、面面平行或垂直的判定与性质定理,也可以结合几何体模型进行判断,考查推理能力,属于中等题.2、A【解析】
由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.3、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.4、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.6、A【解析】
利用点与圆心连线的直线与所求直线垂直,求出斜率,即可求过点与圆C相切的直线方程;【详解】圆可化为:,显然过点的直线不与圆相切,则点与圆心连线的直线斜率为,则所求直线斜率为,代入点斜式可得,整理得。故选A.【点睛】本题考查直线方程,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.7、A【解析】
根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.8、C【解析】
因为“甲队获胜”与“乙队不输”是对立事件,对立事件的概率之和为1,进而即可求出结果.【详解】由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是,所以,这次比赛乙队不输的概率是.故选C【点睛】本题主要考查对立事件的概率问题,熟记对立事件的性质即可,属于常考题型.9、C【解析】
根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.10、B【解析】
直接利用古典概型的概率公式求解.【详解】从数字0,1,2,3,4中任取两个不同的数字构成一个两位数有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16个,其中大于30的有31,32,34,40,41,42,43,共7个,故所求概率为.故选B【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.12、【解析】
先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。13、【解析】
利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.14、【解析】
设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.15、【解析】
根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.16、【解析】
可先求出一元二次方程的两根,即可得到不等式的解集.【详解】由于的两根分别为:,,因此不等式的解集是.【点睛】本题主要考查一元二次不等式的求解,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,,,,所以,答:电视塔的高为约.【点睛】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题18、(1),平均数为,中位数为(2)①见解析②【解析】
(1)由频率分布直方图各个小矩形的面积之和为1可得,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在有2人,在有4人,设在的是,,在的是,可用列举法列举出选2人的所有可能,然后可计算出概率.【详解】(1)由频率分布直方图各个小矩形的面积之和为1,得在频率分布直方图中,这100位参赛者年龄的样本平均数为:设中位数为,由,解得.(2)①每组应各抽取人数如下表:年龄人数12485②根据分层抽样的原理,年龄在有2人,在有4人,设在的是,,在的是,列举选出2人的所有可能如下:,共15种情况.设“这2人至少有一人的年龄在区间”为事件,则包含:共9种情况则【点睛】本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型.19、(1);(2)【解析】
(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所以,,其斜率为:,所以的斜率为所以直线的方程为:化简可得:.【点睛】本题考查了直线方程的求法,主要考查直线的点斜式方程,以及化简为一般式,属于基础题.20、【解析】
由已知条件利用等差数列前项和公式求出公差和首项,由此能求出,且,当时,,当时,。【详解】解得,设从第项开始大于零,则,即当时,当时,综上有【点睛】本题考查数列的前项和的求法,是中档题,注意等差数列的函数性质的运用。21、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解析】
(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 嘉善物业公司今冬明春火灾防控工作总结模版
- 丝绸加工合同范例
- 公司电脑转让合同范例
- 仓库保洁合同范例
- 新质生产力温州
- 会员保密合同范例
- 个人沙发租房合同范例
- 企业出口货物运输合同范例
- 修补砂浆出售合同范例
- 主播经纪合同范例
- SMT设备安全培训材料
- 北师大版八年级数学上册一次函数《一次函数中的三角形面积 》教学课件
- 《中央空调原理与维护》课件
- 石油化工压力管道安装工艺及质量控制重点
- 质量管理科提高医疗质量安全不良事件报告率PDCA
- 2025直播带货主播签约合作合同(范本)
- 人事档案管理系统验收报告文档
- 《刑事诉讼法学教学》课件
- 2025年高考物理复习之小题狂练600题(解答题):机械波(10题)
- 首都经济贸易大学《中级微观经济学》2023-2024学年第一学期期末试卷
- 2018年高考英语全国一卷(精校+答案+听力原文)
评论
0/150
提交评论