版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省临川一中等高一数学第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件2.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.3.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.4.若直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1 B.3或1 C.-3或1 D.-1或35.若角的终边经过点,则()A. B. C. D.6.已知等比数列的前n项和为,若,,则()A. B. C.1 D.27.在中,,,,则()A. B.或 C.或 D.8.向量,,,满足条件.,则A. B. C. D.9.若正实数,满足,且恒成立,则实数的取值范围为()A. B. C. D.10.已知,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个扇形的圆心角是2弧度,半径是4,则此扇形的面积是______.12.已知点和点,点在轴上,若的值最小,则点的坐标为______.13.已知数列的前项和是,且,则______.(写出两个即可)14.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.15.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.16.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(Ⅰ)求的值;(Ⅱ)若,求的值.18.已知圆A:,圆B:.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.19.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.20.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.21.为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18B362C54(1)求,;(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。2、D【解析】
对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.3、C【解析】
先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.4、C【解析】
直接利用两直线垂直的充要条件列方程求解即可.【详解】因为直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故选C.【点睛】本题主要考查直线与直线垂直的充要条件,属于基础题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)l1||l2⇔k15、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.6、C【解析】
利用等比数列的前项和公式列出方程组,能求出首项.【详解】等比数列的前项和为,,,,解得,.故选:.【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.7、B【解析】
利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.8、C【解析】向量,则,故解得.故答案为:C。9、B【解析】
根据,结合基本不等式可求得,从而得到关于的不等式,解不等式求得结果.【详解】由题意知:,,(当且仅当,即时取等号),解得:本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.10、C【解析】
利用指数函数、对数函数的单调性即可求解.【详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】
利用公式直接计算即可.【详解】扇形的面积.故答案为:.【点睛】本题考查扇形的面积,注意扇形的面积公式有两个:,其中为扇形的半径,为圆心角的弧度数,为扇形的弧长,可根据题设条件合理选择一个,本题属于基础题.12、【解析】
作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.13、或【解析】
利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.14、【解析】
利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).15、【解析】
根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.16、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知求得,再由,利用两角差的余弦公式展开求解,即可求出结果.【详解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【点睛】本题主要考查了两角和差的正余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.18、(I)(Ⅱ)或【解析】
(Ⅰ)由已知求得,的坐标,再由直线方程的两点式得答案;(Ⅱ)求出的坐标,再求出以及所在直线方程,设,利用点到直线的距离公式求出到所在直线的距离,代入三角形面积公式解得值,进而可得的坐标.【详解】(Ⅰ)将圆:化为:,所以,圆:化为:,所以,所以经过圆与圆的圆心的直线方程为:,即.(Ⅱ)如图,设,由题意可得,解得,即,∴,所在直线方程为,即,设,则到所在直线的距离,由,解得或,∴点的坐标为或.【点睛】本题考查直线与圆位置关系的应用,考查点关于直线的对称点的求法,考查运算求解能力,属于中档题.19、⑴(2)【解析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等20、(1);(2)或.【解析】
(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【点睛】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.21、(1),(2)【解析】
(1)根据分层抽样的概念,可得,求解即可;(2)分别记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届河南省登封市嵩阳高级中学高二生物第一学期期末复习检测模拟试题含解析
- 2026届广东省珠海市紫荆中学高一上数学期末复习检测试题含解析
- 2025至2030中国建筑建材行业市场发展分析及前景预判与投资研究报告
- 2025至2030不良资产处置行业竞争格局分析及未来发展趋势与投资机会研究报告
- 2025-2030中国遮阳用品行业应用领域趋势及投资前景效益规划研究报告
- 2025-2030日用化学产业行业市场供需现状分析及投资评估规划研究
- 2025-2030无线充电模块行业市场供需分析及投资评估规划分析研究报告
- 2025-2030无人驾驶技术路线竞争分析应用场景拓展投资回报规划研究
- 2025-2030无人驾驶出租车行业市场发展风险评估与发展规划
- 2025-2030无人机制造业商业模式创新研究及其投资机会分析
- (正式版)DB65∕T 4185-2019 《公路雪害防治技术规范》
- 通信冬季施工安全培训课件
- 2024SIWOF斯沃电气火灾监控系统
- 史海启智心育润心:高中历史教学与心理健康教育的融合探索
- 产品推广项目管理办法
- (2025秋新版)人教版二年级数学上册全册教案(教学设计)
- 内科护理副高答辩题库及答案
- 小学无废校园教学课件
- 地产公司品牌策划方案
- 2025年高考真题-化学(黑吉辽卷) 含答案(黑龙江、吉林、辽宁、内蒙古)
- 初三英语阅读竞赛含答案
评论
0/150
提交评论