




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市常州高级中学分校2025届数学高一下期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.2.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④3.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.4.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.5.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形6.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是7.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.8.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.9.若,则以下不等式一定成立的是()A. B. C. D.10.已知是第二象限角,且,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,则__________.12.设满足约束条件,则的最小值为__________.13.已知等差数列的前n项和为,若,,,则________14.当,时,执行完如图所示的一段程序后,______.15.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.16.设表示不超过的最大整数,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,,,三点满足.(1)求值;(2)已知若的最小值为,求的最大值.18.已知直线经过点,且与轴正半轴交于点,与轴正半轴交于点,为坐标原点.(1)若点到直线的距离为4,求直线的方程;(2)求面积的最小值.19.已知.(1)求的值:(2)求的值.20.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.21.已知且,比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
分别求出四个选项中函数的周期,排除选项后,再通过函数的单调减区间找出正确选项即可.【详解】由题意观察选项,C的周期不是,所以C不正确;对于A,,函数的周期为,但在区间上为增函数,故A不正确;对于B,,函数的周期为,且在区间上为减函数,故B正确;对于D,,函数的周期为,但在区间上为增函数,故D不正确;故选:B【点睛】本题主要考查三角函数的性质,需熟记正弦、余弦、正切、余切的性质,属于基础题.2、C【解析】
根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.3、A【解析】
由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.4、A【解析】
根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.5、C【解析】
先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【解析】
由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.7、A【解析】
分别计算出每个面积,相加得到答案.【详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.8、A【解析】
由余弦定理可直接求出边的长.【详解】由余弦定理可得,,所以.故选A.【点睛】本题考查了余弦定理的运用,考查了计算能力,属于基础题.9、C【解析】
利用不等式的运算性质分别判断,正确的进行证明,错误的举出反例.【详解】没有确定正负,时,,所以不选A;当时,,所以不选B;当时,,所以不选D;由,不等式成立.故选C.【点睛】本题考查不等式的运算性质,比较法证明不等式,属于基本题.10、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。12、-1【解析】
由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13、1【解析】
由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.14、1【解析】
模拟程序运行,可得出结论.【详解】时,满足,所以.故答案为:1.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.15、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.16、【解析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】
(1)由,得,化简得,即可得到答案;(2)化简函数,对实数分类讨论求得函数的最小值,得到关于的分段函数,进而求得函数的最大值.【详解】(1)由题意知三点满足,可得,所以,即即,则,所以.(2)由题意,函数因为,所以,当时,取得最小值,当时,当时,取得最小值,当时,当时,取得最小值,综上所述,,可得函数的最大值为1,即的最大值为1.【点睛】本题主要考查了向量的线性运算,向量的数量积的坐标性质,以及三角函数和二次函数的性质的综合应用,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.18、(1)(2)【解析】
(1)直线过定点P,故设直线l的方程为,再由点到直线的距离公式,即可解得k,得出直线方程;(2)设直线方程,,表示出A,B点的坐标,三角形面积为,根据k的取值范围即可取出面积最小值.【详解】解:(1)由题意可设直线的方程为,即,则,解得.故直线的方程为,即.(2)因为直线的方程为,所以,,则的面积为.由题意可知,则(当且仅当时,等号成立).故面积的最小值为.【点睛】本题考查求直线方程和用基本不等式求三角形面积的最小值.19、(1);(2)【解析】
(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角的正弦公式化简即可求值.【详解】(1)因为且所以;(2).【点睛】本题主要考查了三角函数的化简与求值,关键是利用诱导公式、同角三角函数的基本关系以及辅助角公式来求解,属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(I)将化简整理成的形式,利用公式可求最小正周期;(II)根据,可求的范围,结合函数图象的性质,可得参数的取值范围.【详解】(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同如何签订协议书
- 2025办公楼装修合同的范本
- 终止合同协议书告知函
- 活动板房施工合同协议书
- 定房协议书与购房合同
- 钢筋工用工合同协议书
- 《2025房屋租赁合同登记或备案所需提交的材料》
- 2025电子版土地使用权转让合同范本
- 解除购买合同协议书范本
- 2025设备抵押借款合同书模板
- 2025年四川省成都市锦江区中考二诊物理试题(含答案)
- DB34T 4720-2024工会驿站运维服务规范
- 安川机器人手动操纵及编程基础
- 智慧矿山无人机自动巡检解决方案
- 2025年浙江省杭州市西湖区中考数学一模试卷
- 焊接设备维护与保养试题及答案
- 2025年中国ARM云手机行业市场运行格局及投资前景预测分析报告
- 《民间借贷法规解析》课件
- 混凝土配合比试验设计方案
- 蓝色简约风美国加征关税
- 规范种植品种管理制度
评论
0/150
提交评论