2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州市经济开发区九年级数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是()A. B.C. D.2.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或23.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.4.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy45.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)6.下列方程中,为一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..7.若反比例函数的图像经过点,则下列各点在该函数图像上的为()A. B. C. D.8.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.10.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A.正三角形 B.正方形 C.正五边形 D.正六边形二、填空题(每小题3分,共24分)11.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.12.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.13.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.14.抛物线的对称轴为直线______.15.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论中一定成立的是_____(把所有正确结论的序号都填在横线上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.16.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.17.长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了______.18.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.三、解答题(共66分)19.(10分)不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.20.(6分)已知:为的直径,,为上一动点(不与、重合).(1)如图1,若平分,连接交于点.①求证:;②若,求的长;(2)如图2,若绕点顺时针旋转得,连接.求证:为的切线.21.(6分)表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日12月19日12月20日12月21日最高气温(℃)106789最低气温(℃)10﹣10322.(8分)有两个口袋,口袋中装有两个分别标有数字2,3的小球,口袋中装有三个分别标有数字的小球(每个小球质量、大小、材质均相同).小明先从口袋中随机取出一个小球,用表示所取球上的数字;再从口袋中顺次取出两个小球,用表示所取两个小球上的数字之和.(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;(2)求的值是整数的概率.23.(8分)如图,直线与轴交于点(),与轴交于点,抛物线()经过,两点,为线段上一点,过点作轴交抛物线于点.(1)当时,①求抛物线的关系式;②设点的横坐标为,用含的代数式表示的长,并求当为何值时,?(2)若长的最大值为16,试讨论关于的一元二次方程的解的个数与的取值范围的关系.24.(8分)如图,AB为半圆O的直径,点C在半圆上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC(1)求证:AD是半圆O的切线;(2)求证:△ABC∽△DOA;(3)若BC=2,CE=,求AD的长.25.(10分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.26.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:由左视图的定义知该领奖台的左视图如下:故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.2、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;

当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,

∴a、b为一元二次方程x2-6x+2=0的两根,

∴a+b=6,ab=2,

∴==1.

故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.3、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.4、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.5、C【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,

∴对称轴x==1.5;

点(-1,0)关于对称轴对称点为(4,0),

因此它的图象与x轴的另一个交点坐标是(4,0).

故选C.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.6、B【解析】试题解析:A.是一元一次方程,故A错误;

B.是一元二次方程,故B正确;

C.不是整式方程,故C错误;

D.不是一元二次方程,故D错误;

故选B.7、C【分析】将点代入求出反比例函数的解析式,再对各项进行判断即可.【详解】将点代入得解得∴只有点在该函数图象上故答案为:C.【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质以及应用是解题的关键.8、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.9、B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为.故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10、D【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【详解】连接,∵半径是5,,∴,根据勾股定理,,∴,因此弦的长是1.【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.12、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.13、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.14、【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【详解】∵抛物线y=x2+8x+2=(x+1)2﹣11,∴该抛物线的对称轴是直线x=﹣1.故答案为:x=﹣1.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.15、①②③【分析】①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG,求出AC,AG,即可得出②正确;③由勾股定理求出DF,由GE=tan∠2•ED求出GE,即可得出③正确;④由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出④不正确.【详解】∵四边形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;连接BD交AC于点O.∵DF⊥AB,F为边AB的中点,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB•cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2•ED=tan30°×1,∴DF+GECG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FGAG,S四边形BFGC=S△ABC﹣S△AGF211,∴④不正确.故答案为:①②③.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.16、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:117、2-2【详解】由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了m.故答案为.18、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.三、解答题(共66分)19、(1);(2).【解析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1)①见解析,②2;(2)见解析【分析】(1)①先根据圆周角定理得出,再得出,再根据角平分线的定义得出,最后根据三角形外角定理即可求证;②取中点,连接,可得是中位线,根据平行线的性质得,然后根据等腰三角形的性质得出,最后再根据中位线的性质得出;(2)上截取,连接,由题意先得出,再得出,然后由旋转性质得、,再根据同角的补角相等得出,然后证的,最后得出即可证明.【详解】解:(1)①证明:为的直径,.,,..平分,.,,.;②解法一:如图,取中点,连接,为的中点,,..,,..;解法二:如图,作,垂足为,平分,,.......在中,.;解法三:如图,作,垂足为,设平分,,.∴∴,即∴解得:∴(2)证明(法一):如图,在上截取,连接.,....由旋转性质得,,.,..(没写不扣分)...为的切线.证法二:如图,延长到,使.由旋转性质得,,..,..(没写不扣分),.,.......为的切线.证法三:作交延长线于点.(余下略)由旋转性质得,,∴,∴.∵∴∴、∴∴∴∴∵为的直径,∴∴∴∴.∴为的切线.【点睛】本题主要考察圆周角定理、角平分线定义、中位线性质、全等三角形的判定及性质等,准确作出辅助线是关键.21、见解析【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵高=(℃),低=(℃),高==2(℃2)低==1.84(℃2)∴高>低∴这5天的日最高气温波动大.【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S2=.22、(1)答案见解析;(2).【分析】(1)共有12种等可能的情况,根据题意画出树状图即可;(2)根据树状图列出所有可能的值,即可求出的值是整数的概率.【详解】(1)用树状图法表示小明所取出的三个小球的所有可能结果如下:共有12种等可能的情况;(2)由树状图可知,所有可能的值分别为:共12种情况,且每种情况出现的可能性相同,其中的值是整数的情况有6种.的值是整数的概率.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.23、(1)①;②;当x=1或x=4时,;(1)当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解.【分析】(1)①首先根据题意得出点A、B的坐标,然后代入抛物线解析式即可得出其表达式;②首先由点A的坐标得出直线解析式,然后得出点P、Q坐标,根据平行构建方程,即可得解;(1)首先得出,然后由PQ的最大值得出最大值,再利用二次函数图象的性质分类讨论一元二次方程的解即可.【详解】(1)①∵m=5,∴点A的坐标为(5,0).将x=0代入,得y=1.∴点B的坐标为(0,1).将A(5,0),B(0,1)代入,得解得∴抛物线的表达式为.②将A(5,0)代入,解得:.∴一次函数的表达为.∴点P的坐标为,又∵PQ∥y轴,∴点Q的坐标为∴∵,∴解得:,∴当x=1或x=4时,;(1)由题意知:设,∴为的二次函数,又<,∵长的最大值为2,∴最大值为2.∴由二次函数的图象性质可知当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解..【点睛】此题主要考查一次函数与二次函数的综合运用,熟练掌握,即可解题.24、(1)见解析;(2)见解析;(3)【分析】(1)要证AD是半圆O的切线只要证明∠DAO=90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC、AB、AO的长,由第(2)问的结论△ABC∽△DOA,根据相似三角形的性质:对应边成比例可得到AD的长.【详解】(1)证明:∵AB为直径,∴∠ACB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论