版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波鄞州区五校联考2025届九年级数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为()A. B. C. D.2.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y1>y23.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=334.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:95.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.36.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.7.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.8.近视镜镜片的焦距y(单位:米)是镜片的度数x(单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:()(单位:度)…100250400500…(单位:米)…1.000.400.250.20…A.y=x B.y= C.y=﹣x+ D.y=9.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm10.已知反比例函数的解析式为,则的取值范围是A. B. C. D.二、填空题(每小题3分,共24分)11.已知某个正六边形的周长为,则这个正六边形的边心距是__________.12.一元二次方程的根是_____.13.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____14.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.15.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.16.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.17.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.18.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.三、解答题(共66分)19.(10分)某校3男2女共5名学生参加黄石市教育局举办的“我爱黄石”演讲比赛.(1)若从5名学生中任意抽取3名,共有多少种不同的抽法,列出所有可能情形;(2)若抽取的3名学生中,某男生抽中,且必有1女生的概率是多少?20.(6分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.21.(6分)如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是_____.22.(8分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.23.(8分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.24.(8分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC、DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)25.(10分)如图,在边长为1的小正方形组成14×14的正方形网格中,△ABC的顶点坐标分别为A(-1,1)、(1)以原点O为位似中心,在y轴的右侧画出△ABC放大2倍后的△(2)设△A1B26.(10分)如图,为反比例函数(x>0)图象上的一点,在轴正半轴上有一点,.连接,,且.(1)求的值;(2)过点作,交反比例函数(x>0)的图象于点,连接交于点,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是.故选:B.【点睛】本题考查概率的计算,熟记概率公式是解题关键.2、C【分析】先求出二次函数的图象的对称轴,然后判断出,,在抛物线上的位置,再根据二次函数的增减性求解.【详解】解:∵二次函数中,∴开口向上,对称轴为,∵中,∴最小,又∵,都在对称轴的左侧,而在对称轴的左侧,随得增大而减小,故.∴.故选:C.【点睛】本题考查二次函数的图象与性质,特别是对称轴与其两侧的增减性,熟练掌握图象与性质是解答关键.3、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.4、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.5、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.6、A【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.8、B【分析】根据表格数据可得近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,依此即可求解;【详解】根据表格数据可得,100×1=250×0.4=400×0.25=500×0.2=100,所以近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,所以y关于x的函数关系式是y=.故选:B.【点睛】此题主要考查了根据实际问题列反比例函数关系式,关键是掌握反比例函数形如(k≠0).9、C【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.10、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.二、填空题(每小题3分,共24分)11、【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】解:如图作正六边形外接圆,连接OA,作OM⊥AB垂足为M,得到∠AOM=30°∵圆内接正六边形ABCDEF的周长为6∴AB=1则AM=,OA=1因而OM=OA·=正六边形的边心距是【点睛】此题主要考查了正多边形和圆,正确掌握正多边形的性质是解题的关键.12、x1=1,x2=2.【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,,x-1=0或x-2=0,所以x1=1,x2=2,故答案为x1=1,x2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.13、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,
故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.14、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.15、【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.16、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.17、(5,1)【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=OD=2,BE=OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.18、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+mx+n=0有实数根的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+mx+n=0有实数根的有3种情况,∴满足关于x的方程x2+mx+n=0有实数根的概率为:=.故答案为:.【点睛】本题主要考查一元二次方程根的判别式与概率,掌握画树状图求得等可能的结果数以及概率公式,是解题的关键.三、解答题(共66分)19、(1)共有10种不同的抽法,分别是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)【分析】(1)根据题意得出不同的抽法,再列举出即可;(2)根据(1)的不同的抽法,找出必有1女生的情况数,再根据概率公式即可得出答案.【详解】解:(1)从5名学生中任意抽取3名,共有10种不同的抽法,分别是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)共有10种不同的抽法,其中必有1女生的有9种,则必有1女生的概率是.【点睛】此题考查了概率的求法,用到的知识点为:概率所求情况数与总情况数之比;解题时要认真审题,注意列举法的合理运用.20、(1)(0≤t≤4);(2)t1=2,t2=;(2)经过点D的双曲线(k≠0)的k值不变,为.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);
(2)将PQ=代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;
(2)连接OB,交PQ于点D,过点D作DF⊥OA于点F,求得点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【详解】解:(1)过点P作PE⊥BC于点E,如图1所示.
当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4-t,2),
∴PE=2,EQ=|4-t-t|=|4-t|,
∴PQ2=PE2+EQ2=22+|4-t|2=t2-20t+21,
∴y关于t的函数解析式及t的取值范围:y=t2−20t+21(0≤t≤4);
故答案为:y=t2−20t+21(0≤t≤4).
(2)当PQ=时,t2−20t+21=()2
整理,得1t2-16t+12=0,
解得:t1=2,t2=.
(2)经过点D的双曲线y=(k≠0)的k值不变.
连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.
∵OC=2,BC=4,
∴OB==1.
∵BQ∥OP,
∴△BDQ∽△ODP,
∴,
∴OD=2.
∵CB∥OA,
∴∠DOF=∠OBC.
在Rt△OBC中,sin∠OBC=,cos∠OBC==,
∴OF=OD•cos∠OBC=2×=,DF=OD•sin∠OBC=2×=,
∴点D的坐标为(,),
∴经过点D的双曲线y=(k≠0)的k值为×=..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=时t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.21、58°【分析】直接利用圆周角定理求解.【详解】∵∠AOC和∠ADC都对,∴∠ADC=∠AOC=×116°=58°.故答案为:58°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22、(1)y=x2﹣2x﹣1;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(1)(,4)或(,4)或(1,﹣4).【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=1,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【详解】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函数解析式是y=x2﹣2x﹣1.(2)∵y=﹣x2﹣2x﹣1=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(1)设P的纵坐标为|yP|,∵S△PAB=2,∴AB•|yP|=2,∵AB=1+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣1,解得,x=1±2,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=2.【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;1.二次函数图象上点的坐标特征.23、【解析】连接OC,由垂径定理可得:EM⊥CD,即可求得的半径.【详解】解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=4则有:CM=CD=2,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是.【点睛】本题考查的是圆,熟练掌握垂径定理是解题的关键.24、(1)见解析;(2)DN-BM=MN【分析】(1)根据题意延长CB至E使得BE=DN,连接AE,利用全等三角形判定证明△ABE≌△AND和△EAM≌△NAM,等量代换即可求证BM+DN=MN;(2)由题意在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产劳动用工合同范本
- 建筑工程合同付款协议
- 客户促销协议合同模板
- 异地承包工厂合同范本
- 教案第三节踏上信息高速公路(2025-2026学年)
- 导学小组合作实施方案教案
- 漫画课教案(2025-2026学年)
- 专题十极坐标参数方程理教案
- 《十五从军征》共修改版教案(2025-2026学年)
- 一轮复习经济生活第一单元教案
- 2025 九年级语文下册诗歌情感表达多样性训练课件
- DB54T 0541-2025 森林火险气象因子评定规范
- 2025年安徽省普通高中学业水平合格性考试化学试卷(含答案)
- 2025年宁波市公共交通集团有限公司下属分子公司招聘备考题库及答案详解参考
- 大型电子显示屏安装施工规范
- 中职中医教师面试题库及答案
- 2026年关于汽车销售工作计划书
- 2025年汕头市金平区教师招聘笔试参考试题及答案解析
- T∕ACEF 235-2025 企业环境社会治理(ESG)评价机构要求
- 拆迁工程安全监测方案
- 视频会议系统施工质量控制方案
评论
0/150
提交评论