版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省盐城市景山中学九上数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定2.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且3.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°4.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.10005.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.6.如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为()A.2 B.3 C.4 D.57.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A. B. C. D.8.如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③;④;其中正确的结论是()A.①③④ B.①②③ C.①②④ D.①②③④9.如图,在一个周长为10m的长方形窗户上钉上一块宽为1m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为()A.9m2 B.25m2 C.16m2 D.4m210.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨11.设,,是抛物线(,为常数,且)上的三点,则,,的大小关系为()A. B. C. D.12.两个相似三角形对应高之比为,那么它们的对应中线之比为()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数的顶点坐标___________.14.在平面直角坐标系中,点与点关于原点对称,则__________.15.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.16.若3a=4b(b≠0),则=_____.17.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.18.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)三、解答题(共78分)19.(8分)如图,在中,,,夹边的长为6,求的面积.20.(8分)如图,中,,是的中点,于.(1)求证:;(2)当时,求的度数.21.(8分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=4,OC=5,求AO的长.22.(10分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.23.(10分)已知二次函数y=(x-m)(x+m+4),其中m为常数.(1)求证:不论m为何值,该二次函数的图像与x轴有公共点.(2)若A(-1,a)和B(n,b)是该二次函数图像上的两个点,请判断a、b的大小关系.24.(10分)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.25.(12分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.(1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.26.如图,在平面直角坐标系中,一次函数与轴和轴分别交于点,点,与反比例函数在第一象限的图象交于点,点,且点的坐标为.(1)求一次函数和反比例函数解析式;(2)若的面积是8,求点坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.2、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.3、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.4、B【解析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可.【详解】由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.1附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.1.故选B.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.5、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、C【分析】根据,利用反比例函数系数的几何意义即可求出值,再根据函数在第一象限可确定的符号.【详解】解:由轴于点,,得到又因图象过第一象限,,解得故选C【点睛】本题考查了反比例函数系数的几何意义.7、B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分线,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的对边AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的对称性,∠CDF=∠CBF=30°.
故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.8、B【分析】①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.故选B.【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..9、D【解析】根据矩形的周长=(长+宽)×1,正方形的面积=边长×边长,列出方程求解即可.【详解】解:若设正方形的边长为am,
则有1a+1(a+1)=10,
解得a=1,故正方形的面积为4m1,即透光面积为4m1.
故选D.【点睛】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般.10、C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.11、C【分析】根据二次函数的性质得到抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,
而A(-2,y1)离直线x=-1的距离最近,C(2,y1)点离直线x=-1最远,
∴y1<y2<y1.
故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12、A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.二、填空题(每题4分,共24分)13、(6,3)【分析】利用配方法将二次函数的解析式化成顶点式即可得出答案.【详解】由此可得,二次函数的顶点式为则顶点坐标为故答案为:.【点睛】本题考查了顶点式二次函数的性质,掌握二次函数顶点式的性质是解题关键.14、1【分析】根据在平面直角坐标系中的点关于原点对称的点的坐标为,进而求解.【详解】∵点与点关于原点对称,∴,故答案为:1.【点睛】本题考查平面直角坐标系中关于原点对称点的特征,即两个点关于原点对称时,它们的坐标符号相反.15、x<−1或x>5.【分析】先利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),所以不等式−x2+bx+c<0的解集为x<−1或x>5.故答案为x<−1或x>5.考点:二次函数图象的性质16、【分析】依据3a=4b,即可得到a=b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=b,∴===.故答案为:.【点睛】本题主要考查了比例的性质,求出a=b是解题的关键.17、【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为:则r1=a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.18、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;三、解答题(共78分)19、△ABC的面积是.【分析】作CD⊥AB于点D,根据等腰直角三角形的性质求出CD和BD的长,再利用三角函数求出AD的长,最后用三角形的面积公式求解即可.【详解】如图,作CD⊥AB于点D.∵∠B=45°,CD⊥AB∴∠BCD=45°∵BC=6∴CD=在Rt△ACD中,∠ACD=75°﹣45°=30°∴∴∴∴△ABC的面积是.【点睛】本题考查了三角函数的应用以及三角形的面积,掌握特殊三角函数的值以及三角形的面积公式是解题的关键.20、(1)详见解析;(2).【分析】(1)易证∽,再利用相似三角形的性质即可得出结论;(2)已有,然后利用(1)的结论进行代换,即可根据两边成比例且夹角相等证得∽,再利用相似三角形的性质即可得出结果.【详解】解:(1)在和中,∵,,∴∽,∴,∴;(2)∵是中点,∴,∵,∴.∵,∴∽,∴.∵,∴.【点睛】本题考查了相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题关键.21、(1)60°;(2)【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;
(2)由旋转的性质得:AD=OB=1,结合题意得到∠ADO=90°.则在Rt△AOD中,由勾股定理即可求得AO的长.【详解】(1)由旋转的性质得:CD=CO,∠ACD=∠BCO.∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD为等边三角形,∴∠ODC=60°.(2)由旋转的性质得:AD=OB=1.∵△OCD为等边三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=.【点睛】本题考查旋转的性质、等边三角形的性质和勾股定理,解题的关键是掌握旋转的性质、等边三角形的性质和勾股定理.22、(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6x≤10时,y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200+1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.23、(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b;③当n<-3或n>-1时,a<b【分析】(1)方法一:当y=0时,(x-m)(x-m-1)=0,解得x1=m,x2=-m-1,即可得到结论;方法二:化简得y=x2+1x-m2-1m,令y=0,可得b2-1ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+1)=0,解得x1=m;x2=-m-1.当m=-m-1,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-1,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+1x-m2-1m.令y=0,b2-1ac=1m2+16m+16=1(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河南洛阳洛龙区安乐镇卫生院招聘2人备考题库附答案详解(基础题)
- 2026广东河源市东源县乡村公益性岗位安置人员招聘61人备考题库附参考答案详解(考试直接用)
- 2026云南双江兴顺和投资运营集团有限责任公司招聘8人备考题库及答案详解(全优)
- 2026山东威海市复退军人康宁医院招聘4人备考题库含答案详解(研优卷)
- 2026云南临沧临翔区第三中学城镇公益性岗位人员招聘3人备考题库及答案详解(易错题)
- 2026新疆伊犁州奎屯市招聘公益性岗位2人备考题库带答案详解(a卷)
- 2026新疆和田地区医疗保障研究会招聘6人备考题库附答案详解(精练)
- 2026“才聚齐鲁成就未来”山东泰山财产保险股份有限公司社会招聘3人备考题库含答案详解(培优b卷)
- 2026广东江门市新会银海集团有限公司招聘2人备考题库有完整答案详解
- 2026上海市聋哑青年技术学校招聘4人备考题库带答案详解(巩固)
- 2026届湖南省长郡中学生物高三上期末学业质量监测模拟试题含解析
- 餐厅特色档口运营方案
- 2025年天翼云解决方案架构师认证考试模拟题库(200题)答案及解析
- 2025年甘肃省综合评标专家库考试题库及答案
- 老年友善医院创建-社区卫生服务中心员工手册
- 高一地理(人教版)学案必修一第6章第二节地质灾害
- 2025年大宗商品数字化交易平台可行性研究报告
- 广东省中山市三鑫学校2025-2026学年上学期九年级10月月考英语试题(含答案)
- 行政执法证据课件
- 《网络安全标准实践指南-网络数据安全风险评估实施指引》
- 平滑肌瘤完整版本
评论
0/150
提交评论