广东省韶关市乐昌县2025届数学九上期末统考试题含解析_第1页
广东省韶关市乐昌县2025届数学九上期末统考试题含解析_第2页
广东省韶关市乐昌县2025届数学九上期末统考试题含解析_第3页
广东省韶关市乐昌县2025届数学九上期末统考试题含解析_第4页
广东省韶关市乐昌县2025届数学九上期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省韶关市乐昌县2025届数学九上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.42.下列各式中属于最简二次根式的是()A. B. C. D.3.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.4.在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A. B. C. D.5.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π6.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米7.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.28.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣29.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)10.二次函数的顶点坐标是()A.(-2,3) B.(-2,-3) C.(2,3) D.(2,-3)11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠012.一组数据-3,2,2,0,2,1的众数是()A.-3 B.2 C.0 D.1二、填空题(每题4分,共24分)13.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.14.关于的一元二次方程有实数根,则实数的取值范围是________.15.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.16.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.17.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234这10人完成引体向上个数的中位数是___________18.写出一个经过点(0,3)的二次函数:________.三、解答题(共78分)19.(8分)学生会要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度.20.(8分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.21.(8分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.22.(10分)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?23.(10分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.24.(10分)甲、乙、丙三位同学在知识竞赛问答环节中,采用抽签的方式决定出场顺序.求甲比乙先出场的概率.25.(12分)已知关于的一元二次方程:.(1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.26.先化简再求值:其中.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据勾股定理求得,然后根据矩形的性质得出.【详解】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴,∴,故选:C.【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.2、A【分析】根据最简二次根式的定义解答即可.【详解】A.是最简二次根式;B.∵=,∴不是最简二次根式;C.∵=,∴不是最简二次根式;D.∵,∴不是最简二次根式;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.3、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.4、B【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数相等.5、B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.6、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,

设这棵树的高度为xm,

则可列比例为解得,x=4.1.

故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.7、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.8、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.9、A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.10、B【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:∵二次函数的顶点式为y=-2(x+2)2−3,

∴其顶点坐标为:(−2,−3).

故选:B.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点坐标特征是解答此题的关键.11、C【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.12、B【解析】一组数据中出现次数最多的数据是众数,根据众数的定义进行求解即可得.【详解】数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余的都出现了1次,所以这组数据的众数是2,故选B.【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键.二、填空题(每题4分,共24分)13、①;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.14、且【解析】根据根的判别式△≥0且二次项系数求解即可.【详解】由题意得,16-4≥0,且,解之得且.故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15、【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.16、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.17、1【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。【详解】解:将10个数据由小到大排序:7、8、8、1、1、1、10、10、10、10,处于这组数据中间位置的数是1、1,那么由中位数的定义可知,这组数据的中位数是(1+1)÷2=1.

所以这组同学引体向上个数的中位数是1.

故答案为:1.【点睛】本题为统计题,考查中位数的意义,解题的关键是准确认识表格.18、(答案不唯一)【分析】设二次函数的表达式为y=x2+x+c,将(0,3)代入得出c=3,即可得出二次函数表达式.【详解】解:设二次函数的表达式为y=ax2+bx+c(a≠0),

∵图象为开口向上,且经过(0,3),

∴a>0,c=3,

∴二次函数表达式可以为:y=x2+3(答案不唯一).

故答案为:y=x2+3(答案不唯一).【点睛】本题主要考查了用待定系数法求二次函数解析式,得出c=3是解题关键,属开放性题目,答案不唯一.三、解答题(共78分)19、上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【分析】由内外两个矩形相似可得,设A′B′=13x,根据矩形作品面积是总面积的列方程可求出x的值,进而可得答案.【详解】∵AB=130,AD=10,∴,∵内外两个矩形相似,∴,∴设A′B′=13x,则A′D′=1x,∵矩形作品面积是总面积的,∴,解得:x=±12,∵x=﹣12<0不合题意,舍去,∴x=12,∴上下彩色纸边宽为(13x﹣130)÷2=13,左右彩色纸边宽为(1x﹣10)÷2=1.答:上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【点睛】本题考查相似多边形的性质,相似多边形的对应角相等,对应边成比例;根据相似多边形的性质得出A′B′与A′D′的比是解题关键.20、(1);(2)50km/h;(3)90km/h.【分析】(1)设K=mv2+nsv,则P=mv2+nsv+1000,利用待定系数法求解可得;

(2)将P=500代入(1)中解析式,解方程可得;

(3)将s=180代入解析式后,配方成顶点式可得最值情况.【详解】解:(1)设K=mv2+nsv,则P=mv2+nsv+1000,由题意得:,整理得:,解得:,则P=﹣v2+sv+1000;(2)根据题意得﹣v2+40v+1000=500,整理得:v2﹣40v﹣500=0,解得:v=﹣10(舍)或v=50,答:平均速度为50km/h;(3)当s=180时,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,∴当v=90时,P最大=9100,答:若行驶指数值最大,平均速度的值为90km/h.【点睛】本题主要考查待定系数法求函数解析式、解二元一次方程组、解一元二次方程的能力及二次函数的性质,熟练掌握待定系数法求得函数解析式是解题的关键.21、4πcm2【分析】由旋转知△A′BC′≌△ABC,两个三角形的面积S△A′BC′=S△ABC,将三角形△A′BC′旋转到三角形△ABC,变成一个扇面,阴影面积=大扇形A′BA面积-小扇形C′OC面积即可.【详解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,由旋转知△A′BC′≌△ABC∴S△A′BC′=S△ABC,∴S阴影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC=S扇形ABA′-S扇形CBC′=×(42-22)=4π(cm2).【点睛】本题考查阴影部分面积问题,关键利用顺时针旋转△A′C′B到△ACB,补上△A′C′B内部的阴影面积,使图形变成一个扇面,用扇形面积公式求出大扇形面积与小扇形面积.22、该单位这次共有30名员工去天水湾风景区旅游.【分析】首先根据共支付给春秋旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.【详解】设该单位这次共有名员工去天水湾风景区旅游,因为,所以员工人数一定超过25人,可得方程,整理,得,解得:,当时,,故舍去,当时,,符合题意,答:该单位这次共有30名员工去天水湾风景区旅游.23、(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5=,∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=5,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论