2024年高考数学第一轮复习讲义第八章8.6 空间向量与立体几何(学生版+解析)_第1页
2024年高考数学第一轮复习讲义第八章8.6 空间向量与立体几何(学生版+解析)_第2页
2024年高考数学第一轮复习讲义第八章8.6 空间向量与立体几何(学生版+解析)_第3页
2024年高考数学第一轮复习讲义第八章8.6 空间向量与立体几何(学生版+解析)_第4页
2024年高考数学第一轮复习讲义第八章8.6 空间向量与立体几何(学生版+解析)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§8.6空间向量与立体几何考试要求1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有____和____的量相等向量方向____且模____的向量相反向量方向____且模____的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相____或____的向量共面向量平行于________的向量2.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使________________.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=________________________.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=__________________________,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=________________________________.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b共线a=λb(b≠0,λ∈R)垂直a·b=0(a≠0,b≠0)模|a|夹角余弦值cos〈a,b〉=eq\f(a·b,|a||b|)(a≠0,b≠0)cos〈a,b〉=____________4.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.(3)空间位置关系的向量表示位置关系向量表示直线l,m的方向向量分别为a,bl∥ma∥b⇔a=kb(k∈R)l⊥ma⊥b⇔a·b=0直线l的方向向量为u,平面α的法向量为v,l⊄αl∥αu⊥v⇔u·v=0l⊥αu∥v⇔u=kv(k∈R)平面α,β的法向量分别为u,vα∥βu∥v⇔u=kv(k∈R)α⊥βu⊥v⇔u·v=0常用结论1.三点共线:在平面中A,B,C三点共线⇔eq\o(OA,\s\up6(→))=xeq\o(OB,\s\up6(→))+yeq\o(OC,\s\up6(→))(其中x+y=1),O为平面内任意一点.2.四点共面:在空间中P,A,B,C四点共面⇔eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+yeq\o(OB,\s\up6(→))+zeq\o(OC,\s\up6(→))(其中x+y+z=1),O为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a,b共面.()(2)空间中模相等的两个向量方向相同或相反.()(3)若A,B,C,D是空间中任意四点,则有eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DA,\s\up6(→))=0.()(4)若直线a的方向向量和平面α的法向量平行,则a∥α.()教材改编题1.如图,在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为点M,设eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AA1,\s\up6(→))=c,则下列向量中与eq\o(C1M,\s\up6(→))相等的向量是()A.-eq\f(1,2)a+eq\f(1,2)b+c B.eq\f(1,2)a+eq\f(1,2)b+cC.-eq\f(1,2)a-eq\f(1,2)b-c D.-eq\f(1,2)a-eq\f(1,2)b+c2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=eq\f(\r(2)a,3),则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定3.设直线l1,l2的方向向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m=________.题型一空间向量的线性运算例1(1)在空间四边形ABCD中,eq\o(AB,\s\up6(→))=(-3,5,2),eq\o(CD,\s\up6(→))=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则eq\o(EF,\s\up6(→))的坐标为()A.(2,3,3) B.(-2,-3,-3)C.(5,-2,1) D.(-5,2,-1)听课记录:________________________________________________________________________________________________________________________________________________(2)(2023·北京日坛中学模拟)在三棱柱A1B1C1-ABC中,D是四边形BB1C1C的中心,且eq\o(AA1,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,eq\o(AC,\s\up6(→))=c,则eq\o(A1D,\s\up6(→))等于()A.eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c B.eq\f(1,2)a-eq\f(1,2)b+eq\f(1,2)cC.eq\f(1,2)a+eq\f(1,2)b-eq\f(1,2)c D.-eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c听课记录:________________________________________________________________________________________________________________________________________________思维升华用已知向量表示某一向量的三个关键点(1)要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义.(3)在立体几何中,三角形法则、平行四边形法则仍然成立.跟踪训练1(1)已知a=(2,3,-4),b=(-4,-3,-2),b=eq\f(1,2)x-2a,则x等于()A.(0,3,-6) B.(0,6,-20)C.(0,6,-6) D.(6,6,-6)(2)如图,在长方体ABCD-A1B1C1D1中,O为AC的中点.①化简eq\o(A1O,\s\up6(→))-eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,2)eq\o(AD,\s\up6(→))=________;②用eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(AA1,\s\up6(→))表示eq\o(OC1,\s\up6(→)),则eq\o(OC1,\s\up6(→))=________.题型二空间向量基本定理及其应用例2(1)下列命题正确的是()A.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面,即它们所在的直线共面C.若空间向量a,b,c不共面,则a,b,c都不为0D.若a,b,c共面,则存在唯一的实数对(x,y),使得a=xb+yc听课记录:__________________________________________________________________________________________________________________________________________________(2)下列说法中正确的是()A.|a|-|b|=|a+b|是a,b共线的充要条件B.若eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))共线,则AB∥CDC.A,B,C三点不共线,对空间任意一点O,若eq\o(OP,\s\up6(→))=eq\f(3,4)eq\o(OA,\s\up6(→))+eq\f(1,4)eq\o(OB,\s\up6(→))+eq\f(1,8)eq\o(OC,\s\up6(→)),则P,A,B,C四点共面D.若P,A,B,C为空间四点,且有eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))+μeq\o(PC,\s\up6(→))(eq\o(PB,\s\up6(→)),eq\o(PC,\s\up6(→))不共线),则λ+μ=1是A,B,C三点共线的充要条件听课记录:__________________________________________________________________________________________________________________________________________________思维升华应用共线(面)向量定理、证明点共线(面)的方法比较三点(P,A,B)共线空间四点(M,P,A,B)共面eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))eq\o(MP,\s\up6(→))=xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+teq\o(AB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=eq\o(OM,\s\up6(→))+xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+(1-x)eq\o(OB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=xeq\o(OM,\s\up6(→))+yeq\o(OA,\s\up6(→))+(1-x-y)eq\o(OB,\s\up6(→))跟踪训练2(1)已知空间中A,B,C,D四点共面,且其中任意三点均不共线,设P为空间中任意一点,若eq\o(BD,\s\up6(→))=6eq\o(PA,\s\up6(→))-4eq\o(PB,\s\up6(→))+λeq\o(PC,\s\up6(→)),则λ等于()A.2B.-2C.1D.-1(2)(2023·金华模拟)已知正方体ABCD-A1B1C1D1的棱长为1,且满足eq\o(DE,\s\up6(→))=xeq\o(DA,\s\up6(→))+yeq\o(DC,\s\up6(→))+(1-x-y)eq\o(DD1,\s\up6(→)),则|eq\o(DE,\s\up6(→))|的最小值是()A.eq\f(1,3)B.eq\f(\r(2),3)C.eq\f(\r(3),3)D.eq\f(2,3)题型三空间向量数量积及其应用例3(1)(2022·长春模拟)已知a=(-1,3,1),b=(2,0,-4),c=(3,-2,3),则a·(b+c)=________.听课记录:________________________________________________________________________________________________________________________________________________(2)如图,已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°.①求线段AC1的长;②求异面直线AC1与A1D所成角的余弦值;③求证:AA1⊥BD.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华空间向量的数量积运算有两条途径,一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.跟踪训练3(1)(2023·益阳模拟)在正三棱锥P-ABC中,O是△ABC的中心,PA=AB=2,则eq\o(PO,\s\up6(→))·eq\o(PA,\s\up6(→))等于()A.eq\f(5,9)B.eq\f(\r(6),3)C.eq\f(4\r(2),3)D.eq\f(8,3)(2)(2022·营口模拟)已知A(-1,2,1),B(-1,5,4),C(1,3,4).①求〈eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))〉;②求eq\o(AC,\s\up6(→))在eq\o(AB,\s\up6(→))上的投影.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型四向量法证明平行、垂直例4如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华(1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.(1)求证:平面A1B1D⊥平面ABD;(2)求证:平面EGF∥平面ABD.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________§8.6空间向量与立体几何考试要求1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·ba1b1+a2b2+a3b3共线a=λb(b≠0,λ∈R)a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模|a|eq\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3))夹角余弦值cos〈a,b〉=eq\f(a·b,|a||b|)(a≠0,b≠0)cos〈a,b〉=eq\f(a1b1+a2b2+a3b3,\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3))·\r(b\o\al(2,1)+b\o\al(2,2)+b\o\al(2,3)))4.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.(3)空间位置关系的向量表示位置关系向量表示直线l,m的方向向量分别为a,bl∥ma∥b⇔a=kb(k∈R)l⊥ma⊥b⇔a·b=0直线l的方向向量为u,平面α的法向量为v,l⊄αl∥αu⊥v⇔u·v=0l⊥αu∥v⇔u=kv(k∈R)平面α,β的法向量分别为u,vα∥βu∥v⇔u=kv(k∈R)α⊥βu⊥v⇔u·v=0常用结论1.三点共线:在平面中A,B,C三点共线⇔eq\o(OA,\s\up6(→))=xeq\o(OB,\s\up6(→))+yeq\o(OC,\s\up6(→))(其中x+y=1),O为平面内任意一点.2.四点共面:在空间中P,A,B,C四点共面⇔eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+yeq\o(OB,\s\up6(→))+zeq\o(OC,\s\up6(→))(其中x+y+z=1),O为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a,b共面.(√)(2)空间中模相等的两个向量方向相同或相反.(×)(3)若A,B,C,D是空间中任意四点,则有eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DA,\s\up6(→))=0.(√)(4)若直线a的方向向量和平面α的法向量平行,则a∥α.(×)教材改编题1.如图,在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为点M,设eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AA1,\s\up6(→))=c,则下列向量中与eq\o(C1M,\s\up6(→))相等的向量是()A.-eq\f(1,2)a+eq\f(1,2)b+c B.eq\f(1,2)a+eq\f(1,2)b+cC.-eq\f(1,2)a-eq\f(1,2)b-c D.-eq\f(1,2)a-eq\f(1,2)b+c答案C解析eq\o(C1M,\s\up6(→))=eq\o(C1C,\s\up6(→))+eq\o(CM,\s\up6(→))=eq\o(C1C,\s\up6(→))+eq\f(1,2)(eq\o(CB,\s\up6(→))+eq\o(CD,\s\up6(→)))=eq\o(A1A,\s\up6(→))+eq\f(1,2)eq\o(DA,\s\up6(→))+eq\f(1,2)eq\o(BA,\s\up6(→))=-eq\f(1,2)a-eq\f(1,2)b-c.2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=eq\f(\r(2)a,3),则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定答案B解析分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系.因为A1M=AN=eq\f(\r(2)a,3),所以Meq\b\lc\(\rc\)(\a\vs4\al\co1(a,\f(2,3)a,\f(a,3))),Neq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)a,\f(2,3)a,a)),所以eq\o(MN,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,3),0,\f(2,3)a)),又C1(0,0,0),D1(0,a,0),所以eq\o(C1D1,\s\up6(→))=(0,a,0),所以eq\o(MN,\s\up6(→))·eq\o(C1D1,\s\up6(→))=0,所以eq\o(MN,\s\up6(→))⊥eq\o(C1D1,\s\up6(→)).因为eq\o(C1D1,\s\up6(→))是平面BB1C1C的一个法向量,且MN⊄平面BB1C1C,所以MN∥平面BB1C1C.3.设直线l1,l2的方向向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m=________.答案10解析∵l1⊥l2,∴a⊥b,∴a·b=-6-4+m=0,∴m=10.

题型一空间向量的线性运算例1(1)在空间四边形ABCD中,eq\o(AB,\s\up6(→))=(-3,5,2),eq\o(CD,\s\up6(→))=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则eq\o(EF,\s\up6(→))的坐标为()A.(2,3,3) B.(-2,-3,-3)C.(5,-2,1) D.(-5,2,-1)答案B解析因为点E,F分别为线段BC,AD的中点,设O为坐标原点,所以eq\o(EF,\s\up6(→))=eq\o(OF,\s\up6(→))-eq\o(OE,\s\up6(→)),eq\o(OF,\s\up6(→))=eq\f(1,2)(eq\o(OA,\s\up6(→))+eq\o(OD,\s\up6(→))),eq\o(OE,\s\up6(→))=eq\f(1,2)(eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))).所以eq\o(EF,\s\up6(→))=eq\f(1,2)(eq\o(OA,\s\up6(→))+eq\o(OD,\s\up6(→)))-eq\f(1,2)(eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→)))=eq\f(1,2)(eq\o(BA,\s\up6(→))+eq\o(CD,\s\up6(→)))=eq\f(1,2)×[(3,-5,-2)+(-7,-1,-4)]=eq\f(1,2)×(-4,-6,-6)=(-2,-3,-3).(2)(2023·北京日坛中学模拟)在三棱柱A1B1C1-ABC中,D是四边形BB1C1C的中心,且eq\o(AA1,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,eq\o(AC,\s\up6(→))=c,则eq\o(A1D,\s\up6(→))等于()A.eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)cB.eq\f(1,2)a-eq\f(1,2)b+eq\f(1,2)cC.eq\f(1,2)a+eq\f(1,2)b-eq\f(1,2)cD.-eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c答案D解析eq\o(A1D,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→))=-eq\o(AA1,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\f(1,2)(eq\o(BB1,\s\up6(→))+eq\o(BC,\s\up6(→)))=-eq\o(AA1,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AA1,\s\up6(→))+eq\f(1,2)(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))=-eq\f(1,2)eq\o(AA1,\s\up6(→))+eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AC,\s\up6(→))=-eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c.思维升华用已知向量表示某一向量的三个关键点(1)要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义.(3)在立体几何中,三角形法则、平行四边形法则仍然成立.跟踪训练1(1)已知a=(2,3,-4),b=(-4,-3,-2),b=eq\f(1,2)x-2a,则x等于()A.(0,3,-6) B.(0,6,-20)C.(0,6,-6) D.(6,6,-6)答案B解析由b=eq\f(1,2)x-2a,得x=4a+2b=(8,12,-16)+(-8,-6,-4)=(0,6,-20).(2)如图,在长方体ABCD-A1B1C1D1中,O为AC的中点.①化简eq\o(A1O,\s\up6(→))-eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,2)eq\o(AD,\s\up6(→))=________;②用eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(AA1,\s\up6(→))表示eq\o(OC1,\s\up6(→)),则eq\o(OC1,\s\up6(→))=________.答案①eq\o(A1A,\s\up6(→))②eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))解析①eq\o(A1O,\s\up6(→))-eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,2)eq\o(AD,\s\up6(→))=eq\o(A1O,\s\up6(→))-eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))=eq\o(A1O,\s\up6(→))-eq\o(AO,\s\up6(→))=eq\o(A1O,\s\up6(→))+eq\o(OA,\s\up6(→))=eq\o(A1A,\s\up6(→)).②因为eq\o(OC,\s\up6(→))=eq\f(1,2)eq\o(AC,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))).所以eq\o(OC1,\s\up6(→))=eq\o(OC,\s\up6(→))+eq\o(CC1,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))+eq\o(AA1,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→)).题型二空间向量基本定理及其应用例2(1)下列命题正确的是()A.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面,即它们所在的直线共面C.若空间向量a,b,c不共面,则a,b,c都不为0D.若a,b,c共面,则存在唯一的实数对(x,y),使得a=xb+yc答案C解析若b=0,则满足a与b共线,b与c共线,但是a与c不一定共线,故A错误;因为向量是可以移动的量,所以向量a,b,c共面,但它们所在的直线不一定共面,故B错误;假设a,b,c至少有一个为0,则空间向量a,b,c共面,故假设不成立,故C正确;假设b=0,若a,c共线,则存在无数个实数对(x,y),使得a=xb+yc,若a,c不共线,则不存在实数对(x,y),使得a=xb+yc,故D错误.(2)下列说法中正确的是()A.|a|-|b|=|a+b|是a,b共线的充要条件B.若eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))共线,则AB∥CDC.A,B,C三点不共线,对空间任意一点O,若eq\o(OP,\s\up6(→))=eq\f(3,4)eq\o(OA,\s\up6(→))+eq\f(1,4)eq\o(OB,\s\up6(→))+eq\f(1,8)eq\o(OC,\s\up6(→)),则P,A,B,C四点共面D.若P,A,B,C为空间四点,且有eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))+μeq\o(PC,\s\up6(→))(eq\o(PB,\s\up6(→)),eq\o(PC,\s\up6(→))不共线),则λ+μ=1是A,B,C三点共线的充要条件答案D解析由|a|-|b|=|a+b|,可知向量a,b的方向相反,此时向量a,b共线,反之,当向量a,b同向时,不能得到|a|-|b|=|a+b|,所以A不正确;若eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))共线,则AB∥CD或A,B,C,D四点共线,所以B不正确;由A,B,C三点不共线,对空间任意一点O,若eq\o(OP,\s\up6(→))=eq\f(3,4)eq\o(OA,\s\up6(→))+eq\f(1,8)eq\o(OB,\s\up6(→))+eq\f(1,8)eq\o(OC,\s\up6(→)),因为eq\f(3,4)+eq\f(1,8)+eq\f(1,8)=1,可得P,A,B,C四点共面,所以C不正确;若P,A,B,C为空间四点,且有eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))+μeq\o(PC,\s\up6(→))(eq\o(PB,\s\up6(→)),eq\o(PC,\s\up6(→))不共线),当λ+μ=1时,即μ=1-λ,可得eq\o(PA,\s\up6(→))-eq\o(PC,\s\up6(→))=λ(eq\o(PB,\s\up6(→))-eq\o(PC,\s\up6(→))),即eq\o(CA,\s\up6(→))=λeq\o(CB,\s\up6(→)),所以A,B,C三点共线,反之也成立,即λ+μ=1是A,B,C三点共线的充要条件,所以D正确.思维升华应用共线(面)向量定理、证明点共线(面)的方法比较三点(P,A,B)共线空间四点(M,P,A,B)共面eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))eq\o(MP,\s\up6(→))=xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+teq\o(AB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=eq\o(OM,\s\up6(→))+xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+(1-x)eq\o(OB,\s\up6(→))对空间任一点O,eq\o(OP,\s\up6(→))=xeq\o(OM,\s\up6(→))+yeq\o(OA,\s\up6(→))+(1-x-y)eq\o(OB,\s\up6(→))跟踪训练2(1)已知空间中A,B,C,D四点共面,且其中任意三点均不共线,设P为空间中任意一点,若eq\o(BD,\s\up6(→))=6eq\o(PA,\s\up6(→))-4eq\o(PB,\s\up6(→))+λeq\o(PC,\s\up6(→)),则λ等于()A.2B.-2C.1D.-1答案B解析eq\o(BD,\s\up6(→))=6eq\o(PA,\s\up6(→))-4eq\o(PB,\s\up6(→))+λeq\o(PC,\s\up6(→)),即eq\o(PD,\s\up6(→))-eq\o(PB,\s\up6(→))=6eq\o(PA,\s\up6(→))-4eq\o(PB,\s\up6(→))+λeq\o(PC,\s\up6(→)),整理得eq\o(PD,\s\up6(→))=6eq\o(PA,\s\up6(→))-3eq\o(PB,\s\up6(→))+λeq\o(PC,\s\up6(→)),由A,B,C,D四点共面,且其中任意三点均不共线,可得6-3+λ=1,解得λ=-2.(2)(2023·金华模拟)已知正方体ABCD-A1B1C1D1的棱长为1,且满足eq\o(DE,\s\up6(→))=xeq\o(DA,\s\up6(→))+yeq\o(DC,\s\up6(→))+(1-x-y)eq\o(DD1,\s\up6(→)),则|eq\o(DE,\s\up6(→))|的最小值是()A.eq\f(1,3)B.eq\f(\r(2),3)C.eq\f(\r(3),3)D.eq\f(2,3)答案C解析因为eq\o(DE,\s\up6(→))=xeq\o(DA,\s\up6(→))+yeq\o(DC,\s\up6(→))+(1-x-y)eq\o(DD1,\s\up6(→)),由空间向量的共面定理可知,点E,A,C,D1四点共面,即点E在平面ACD1上,所以|eq\o(DE,\s\up6(→))|的最小值即为点D到平面ACD1的距离d,由正方体的棱长为1,可得△ACD1是边长为eq\r(2)的等边三角形,则=eq\f(1,2)×(eq\r(2))2×sin

eq\f(π,3)=eq\f(\r(3),2),S△ACD=eq\f(1,2)×1×1=eq\f(1,2),由等体积法得,所以eq\f(1,3)×eq\f(\r(3),2)×d=eq\f(1,3)×eq\f(1,2)×1,解得d=eq\f(\r(3),3),所以|eq\o(DE,\s\up6(→))|的最小值为eq\f(\r(3),3).题型三空间向量数量积及其应用例3(1)(2022·长春模拟)已知a=(-1,3,1),b=(2,0,-4),c=(3,-2,3),则a·(b+c)=________.答案-12解析因为b+c=(5,-2,-1),所以a·(b+c)=-1×5+3×(-2)+1×(-1)=-12.(2)如图,已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°.①求线段AC1的长;②求异面直线AC1与A1D所成角的余弦值;③求证:AA1⊥BD.①解设eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AA1,\s\up6(→))=c,则|a|=|b|=1,|c|=2,a·b=0,c·a=c·b=2×1×cos120°=-1.因为eq\o(AC1,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))=a+b+c,所以|eq\o(AC1,\s\up6(→))|=|a+b+c|=eq\r(a+b+c2)=eq\r(|a|2+|b|2+|c|2+2a·b+2b·c+2a·c)=eq\r(1+1+4+0-2-2)=eq\r(2),所以线段AC1的长为eq\r(2).②解因为eq\o(AC1,\s\up6(→))=a+b+c,eq\o(A1D,\s\up6(→))=b-c,所以eq\o(AC1,\s\up6(→))·eq\o(A1D,\s\up6(→))=(a+b+c)·(b-c)=a·b-a·c+b2-c2=0+1+1-4=-2,|eq\o(A1D,\s\up6(→))|=|b-c|=eq\r(b-c2)=eq\r(|b|2+|c|2-2b·c)=eq\r(1+4+2)=eq\r(7),设异面直线AC1与A1D所成的角为θ,则cosθ=|cos〈eq\o(AC1,\s\up6(→)),eq\o(A1D,\s\up6(→))〉|=eq\f(|\o(AC1,\s\up6(→))·\o(A1D,\s\up6(→))|,|\o(AC1,\s\up6(→))||\o(A1D,\s\up6(→))|)=eq\f(|-2|,\r(2)×\r(7))=eq\f(\r(14),7),即异面直线AC1与A1D所成角的余弦值为eq\f(\r(14),7).③证明由①知eq\o(AA1,\s\up6(→))=c,eq\o(BD,\s\up6(→))=b-a,所以eq\o(AA1,\s\up6(→))·eq\o(BD,\s\up6(→))=c·(b-a)=c·b-c·a=-1+1=0,即eq\o(AA1,\s\up6(→))·eq\o(BD,\s\up6(→))=0,所以AA1⊥BD.思维升华空间向量的数量积运算有两条途径,一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.跟踪训练3(1)(2023·益阳模拟)在正三棱锥P-ABC中,O是△ABC的中心,PA=AB=2,则eq\o(PO,\s\up6(→))·eq\o(PA,\s\up6(→))等于()A.eq\f(5,9)B.eq\f(\r(6),3)C.eq\f(4\r(2),3)D.eq\f(8,3)答案D解析∵P-ABC为正三棱锥,O为△ABC的中心,∴PO⊥平面ABC,∴PO⊥AO,∴eq\o(PO,\s\up6(→))·eq\o(OA,\s\up6(→))=0,|eq\o(AO,\s\up6(→))|=eq\f(2,3)·|eq\o(AB,\s\up6(→))|·sin60°=eq\f(2\r(3),3),故eq\o(PO,\s\up6(→))·eq\o(PA,\s\up6(→))=eq\o(PO,\s\up6(→))·(eq\o(PO,\s\up6(→))+eq\o(OA,\s\up6(→)))=|eq\o(PO,\s\up6(→))|2=|eq\o(AP,\s\up6(→))|2-|eq\o(AO,\s\up6(→))|2=4-eq\f(4,3)=eq\f(8,3).(2)(2022·营口模拟)已知A(-1,2,1),B(-1,5,4),C(1,3,4).①求〈eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))〉;②求eq\o(AC,\s\up6(→))在eq\o(AB,\s\up6(→))上的投影.解①因为A(-1,2,1),B(-1,5,4),C(1,3,4),所以eq\o(AB,\s\up6(→))=(0,3,3),eq\o(BC,\s\up6(→))=(2,-2,0).因为eq\o(AB,\s\up6(→))·eq\o(BC,\s\up6(→))=0×2+3×(-2)+3×0=-6,|eq\o(AB,\s\up6(→))|=3eq\r(2),|eq\o(BC,\s\up6(→))|=2eq\r(2),所以cos〈eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))〉=eq\f(\o(AB,\s\up6(→))·\o(BC,\s\up6(→)),|\o(AB,\s\up6(→))||\o(BC,\s\up6(→))|)=eq\f(-6,3\r(2)×2\r(2))=-eq\f(1,2),故〈eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))〉=eq\f(2π,3).②因为eq\o(AC,\s\up6(→))=(2,1,3),eq\o(AB,\s\up6(→))=(0,3,3),所以eq\o(AC,\s\up6(→))·eq\o(AB,\s\up6(→))=0+1×3+3×3=12.因为|eq\o(AB,\s\up6(→))|=3eq\r(2),所以eq\o(AC,\s\up6(→))在eq\o(AB,\s\up6(→))上的投影为eq\f(\o(AC,\s\up6(→))·\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|)=eq\f(12,3\r(2))=2eq\r(2).题型四向量法证明平行、垂直例4如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(1)证明以A为原点,eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(AA1,\s\up6(→))的方向分别为x轴、y轴、z轴的正方向建立如图所示的空间直角坐标系.设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),Eeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),1,0)),B1(a,0,1).故eq\o(AD1,\s\up6(→))=(0,1,1),eq\o(B1E,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2),1,-1)).因为eq\o(B1E,\s\up6(→))·eq\o(AD1,\s\up6(→))=-eq\f(a,2)×0+1×1+(-1)×1=0,所以eq\o(B1E,\s\up6(→))⊥eq\o(AD1,\s\up6(→)),即B1E⊥AD1.(2)解存在满足要求的点P,假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时eq\o(DP,\s\up6(→))=(0,-1,z0),设平面B1AE的法向量为n=(x,y,z).eq\o(AB1,\s\up6(→))=(a,0,1),eq\o(AE,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),1,0)).因为n⊥平面B1AE,所以n⊥eq\o(AB1,\s\up6(→)),n⊥eq\o(AE,\s\up6(→)),得eq\b\lc\{\rc\(\a\vs4\al\co1(ax+z=0,,\f(ax,2)+y=0,))取x=1,则y=-eq\f(a,2),z=-a,故n=eq\b\lc\(\rc\)(\a\vs4\al\co1(1,-\f(a,2),-a)).要使DP∥平面B1AE,只需n⊥eq\o(DP,\s\up6(→)),则eq\f(a,2)-az0=0,解得z0=eq\f(1,2).所以存在点P,满足DP∥平面B1AE,此时AP=eq\f(1,2).思维升华(1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.(1)求证:平面A1B1D⊥平面ABD;(2)求证:平面EGF∥平面ABD.证明以B为坐标原点,BA,BC,BB1所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,则B(0,0,0),D(0,2,2),B1(0,0,4),E(0,0,3),F(0,1,4).设BA=a,则A(a,0,0),Geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),1,4)).(1)因为eq\o(BA,\s\up6(→))=(a,0,0),eq\o(BD,\s\up6(→))=(0,2,2),eq\o(B1D,\s\up6(→))=(0,2,-2),所以eq\o(B1D,\s\up6(→))·eq\o(BA,\s\up6(→))=0,eq\o(B1D,\s\up6(→))·eq\o(BD,\s\up6(→))=0.所以eq\o(B1D,\s\up6(→))⊥eq\o(BA,\s\up6(→)),eq\o(B1D,\s\up6(→))⊥eq\o(BD,\s\up6(→)),即B1D⊥BA,B1D⊥BD.又BA∩BD=B,BA,BD⊂平面ABD,所以B1D⊥平面ABD.因为B1D⊂平面A1B1D,所以平面A1B1D⊥平面ABD.(2)方法一因为eq\o(EG,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),1,1)),eq\o(EF,\s\up6(→))=(0,1,1),eq\o(B1D,\s\up6(→))=(0,2,-2),所以eq\o(B1D,\s\up6(→))·eq\o(EG,\s\up6(→))=0,eq\o(B1D,\s\up6(→))·eq\o(EF,\s\up6(→))=0.所以B1D⊥EG,B1D⊥EF.因为EG∩EF=E,EG,EF⊂平面EGF,所以B1D⊥平面EGF.又由(1)知B1D⊥平面ABD,所以平面EGF∥平面ABD.方法二因为eq\o(GF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2),0,0)),所以eq\o(GF,\s\up6(→))=-eq\f(1,2)eq\o(BA,\s\up6(→)),∴GF∥BA,又GF⊄平面ABD,AB⊂平面ABD,所以GF∥平面ABD,同理EF∥平面ABD,又GF∩EF=F,GF,EF⊂平面EGF,所以平面EGF∥平面ABD.课时精练1.已知直线l的一个方向向量为m=(x,2,-5),平面α的一个法向量为n=(3,-1,2),若l∥α,则x等于()A.-6B.6C.-4D.4答案D解析若l∥α,则m⊥n,从而m·n=0,即3x-2-10=0,解得x=4.2.下列关于空间向量的命题中,正确的个数为()①若向量a,b与空间任意向量都不能构成基底,则a∥b;②若非零向量a,b,c满足a⊥b,b⊥c,则有a∥c;③若{eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))}是空间的一个基底,且eq\o(OD,\s\up6(→))=eq\f(1,3)eq\o(OA,\s\up6(→))+eq\f(1,3)eq\o(OB,\s\up6(→))+eq\f(1,3)eq\o(OC,\s\up6(→)),则A,B,C,D四点共面;④若{a+b,b+c,c+a}是空间的一个基底,则{a,b,c}也是空间的一个基底.A.1B.2C.3D.4答案C解析对于①,若向量a,b与空间任意向量都不能构成基底,则a,b为共线向量,即a∥b,故①正确;对于②,若非零向量a,b,c满足a⊥b,b⊥c,则a与c不一定共线,故②错误;对于③,若{eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))}是空间的一个基底,且eq\o(OD,\s\up6(→))=eq\f(1,3)eq\o(OA,\s\up6(→))+eq\f(1,3)eq\o(OB,\s\up6(→))+eq\f(1,3)eq\o(OC,\s\up6(→)),则eq\o(OD,\s\up6(→))-eq\o(OA,\s\up6(→))=eq\f(1,3)(eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→)))+eq\f(1,3)(eq\o(OC,\s\up6(→))-eq\o(OA,\s\up6(→))),即eq\o(AD,\s\up6(→))=eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AC,\s\up6(→)),可得A,B,C,D四点共面,故③正确;对于④,若{a+b,b+c,c+a}是空间的一个基底,则空间任意一个向量d存在唯一实数组(x,y,z),使d=x(a+b)+y(b+c)+z(c+a)=(x+z)a+(x+y)b+(y+z)c,则{a,b,c}也是空间的一个基底,故④正确.3.如图,在长方体ABCD-A1B1C1D1中,设AD=1,则eq\o(BD1,\s\up6(→))·eq\o(AD,\s\up6(→))等于()A.1 B.2C.3 D.eq\f(\r(6),3)答案A解析由长方体的性质可知AD⊥AB,AD⊥BB1,AD∥BC,AD=BC=1,eq\o(BD1,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→)),所以eq\o(BD1,\s\up6(→))·eq\o(AD,\s\up6(→))=(eq\o(BA,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→)))·eq\o(AD,\s\up6(→))=eq\o(BA,\s\up6(→))·eq\o(AD,\s\up6(→))+eq\o(BC,\s\up6(→))·eq\o(AD,\s\up6(→))+eq\o(BB1,\s\up6(→))·eq\o(AD,\s\up6(→))=0+eq\o(BC,\s\up6(→))2+0=1.4.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()A.(1,-1,1) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(1,3,\f(3,2)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(1,-3,\f(3,2))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,3,-\f(3,2)))答案B解析对于选项A,eq\o(PA,\s\up6(→))=(1,0,1),eq\o(PA,\s\up6(→))·n=5,所以eq\o(PA,\s\up6(→))与n不垂直,排除A;同理可排除C,D;对于选项B,有eq\o(PA,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(1,-4,\f(1,2))),所以eq\o(PA,\s\up6(→))·n=0,因此B项正确.5.如图在一个120°的二面角的棱上有两点A,B,线段AC,BD分别在这个二面角的两个半平面内,且均与棱AB垂直,若AB=eq\r(2),AC=1,BD=2,则CD的长为()A.2B.3C.2eq\r(3)D.4答案B解析∵eq\o(CD,\s\up6(→))=eq\o(CA,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→)),∴eq\o(CD,\s\up6(→))2=eq\o(CA,\s\up6(→))2+eq\o(AB,\s\up6(→))2+eq\o(BD,\s\up6(→))2+2eq\o(CA,\s\up6(→))·eq\o(AB,\s\up6(→))+2eq\o(CA,\s\up6(→))·eq\o(BD,\s\up6(→))+2eq\o(AB,\s\up6(→))·eq\o(BD,\s\up6(→)),∵eq\o(CA,\s\up6(→))⊥eq\o(AB,\s\up6(→)),eq\o(BD,\s\up6(→))⊥eq\o(AB,\s\up6(→)),∴eq\o(CA,\s\up6(→))·eq\o(AB,\s\up6(→))=0,eq\o(BD,\s\up6(→))·eq\o(AB,\s\up6(→))=0,eq\o(CA,\s\up6(→))·eq\o(BD,\s\up6(→))=|eq\o(CA,\s\up6(→))||eq\o(BD,\s\up6(→))|cos(180°-120°)=eq\f(1,2)×1×2=1.∴eq\o(CD,\s\up6(→))2=1+2+4+2×1=9,∴|eq\o(CD,\s\up6(→))|=3.6.已知空间中三点A(0,1,0),B(2,2,0),C(-1,3,1),则下列结论正确的是()A.eq\o(AB,\s\up6(→))与eq\o(AC,\s\up6(→))是共线向量B.与eq\o(AB,\s\up6(→))共线的单位向量是(1,1,0)C.eq\o(AB,\s\up6(→))与eq\o(BC,\s\up6(→))夹角的余弦值是-eq\f(\r(55),11)D.平面ABC的一个法向量是(-1,-2,5)答案C解析对于A,eq\o(AB,\s\up6(→))=(2,1,0),eq\o(AC,\s\up6(→))=(-1,2,1),不存在实数λ,使得eq\o(AB,\s\up6(→))=λeq\o(AC,\s\up6(→)),所以eq\o(AB,\s\up6(→))与eq\o(AC,\s\up6(→))不是共线向量,所以A错误;对于B,因为eq\o(AB,\s\up6(→))=(2,1,0),所以与eq\o(AB,\s\up6(→))共线的单位向量为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2\r(5),5),\f(\r(5),5),0))或eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(2\r(5),5),-\f(\r(5),5),0)),所以B错误;对于C,向量eq\o(AB,\s\up6(→))=(2,1,0),eq\o(BC,\s\up6(→))=(-3,1,1),所以cos〈eq\o(AB,\s\up6(→)),eq\o(BC,\s\up6(→))〉=eq\f(\o(AB,\s\up6(→))·\o(BC,\s\up6(→)),|\o(AB,\s\up6(→))||\o(BC,\s\up6(→))|)=-eq\f(\r(55),11),所以C正确;对于D,设平面ABC的法向量为n=(x,y,z),因为eq\o(AB,\s\up6(→))=(2,1,0),eq\o(AC,\s\up6(→))=(-1,2,1),所以eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(AB,\s\up6(→))=0,,n·\o(AC,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(2x+y=0,,-x+2y+z=0.))令x=1,则n=(1,-2,5),所以D错误.7.已知直线l的方向向量是m=(1,a+2b,a-1)(a,b∈R),平面α的一个法向量是n=(2,3,3).若l⊥α,则a+b=________.答案2解析∵m=(1,a+2b,a-1)(a,b∈R)是直线l的方向向量,n=(2,3,3)是平面α的一个法向量,l⊥α,∴m∥n,∴eq\f(1,2)=eq\f(a+2b,3)=eq\f(a-1,3),解得a=eq\f(5,2),b=-eq\f(1,2),∴a+b=2.8.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,eq\o(VP,\s\up6(→))=eq\f(1,3)eq\o(VC,\s\up6(→)),eq\o(VM,\s\up6(→))=eq\f(2,3)eq\o(VB,\s\up6(→)),eq\o(VN,\s\up6(→))=eq\f(2,3)eq\o(VD,\s\up6(→)).则VA与平面PMN的位置关系是________.答案VA∥平面PMN解析如图,设eq\o(VA,\s\up6(→))=a,eq\o(VB,\s\up6(→))=b,eq\o(VC,\s\up6(→))=c,则eq\o(VD,\s\up6(→))=a+c-b,由题意知eq\o(PM,\s\up6(→))=eq\f(2,3)b-eq\f(1,3)c,eq\o(PN,\s\up6(→))=eq\f(2,3)eq\o(VD,\s\up6(→))-eq\f(1,3)eq\o(VC,\s\up6(→))=eq\f(2,3)a-eq\f(2,3)b+eq\f(1,3)c.因此eq\o(VA,\s\up6(→))=eq\f(3,2)eq\o(PM,\s\up6(→))+eq\f(3,2)eq\o(PN,\s\up6(→)),∴eq\o(VA,\s\up6(→)),eq\o(PM,\s\up6(→)),eq\o(PN,\s\up6(→))共面.又∵VA⊄平面PMN,∴VA∥平面PMN.9.已知a=(1,-3,2),b=(-2,1,1),A(-3,-1,4),B(-2,-2,2).(1)求|2a+b|;(2)在直线AB上是否存在一点E,使得eq\o(OE,\s\up6(→))⊥b?(O为原点)解(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a+b|=eq\r(02+-52+52)=5eq\r(2).(2)令eq\o(AE,\s\up6(→))=teq\o(AB,\s\up6(→))(t∈R),eq\o(AB,\s\up6(→))=(1,-1,-2),所以eq\o(OE,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(AE,\s\up6(→))=eq\o(OA,\s\up6(→))+teq\o(AB,\s\up6(→))=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),若eq\o(OE,\s\up6(→))⊥b,则eq\o(OE,\s\up6(→))·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=eq\f(9,5).因此存在点E,使得eq\o(OE,\s\up6(→))⊥b,此时点E的坐标为eq\b\lc\(\rc\)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论