




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市天宁区正衡中学2025届九年级数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,垂足为,,若,则的长为()A. B. C.5 D.2.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个3.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.4.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个5.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是()A. B. C. D.6.二次函数y=x2﹣6x图象的顶点坐标为()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)7.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(
)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③9.下列方程中没有实数根的是()A. B.C. D.10.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.1011.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)12.如图,AB是圆O的直径,CD是圆O的弦,若,则()A. B. C. D.二、填空题(每题4分,共24分)13.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.15.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.16.因式分解:_______;17.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.18.抛物线(a>0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a的取值范围是____.三、解答题(共78分)19.(8分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.20.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.21.(8分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求证:对于任意实数t,方程都有实数根;22.(10分)(1)计算:.(2)解方程:.23.(10分)一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;(2)甲、乙两人用这四个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.24.(10分)(1)用配方法解方程:;(2)用公式法解方程:.25.(12分)解方程:.26.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量
参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意先求出AE和BE的长度,再求出∠BAE的sin值,根据平行线的性质得出∠ADE=∠BAE,即可得出答案.【详解】∵,∴BE=∴∵ABCD是平行四边形∴AD∥BC∴∠ADE=∠DEC又∵∠BAE=∠DEC∴∠BAE=∠ADE∴∴故答案选择A.【点睛】本题考查的是平行四边形的综合,难度适中,涉及到了平行四边形的性质以及三角函数值相关知识,需要熟练掌握.2、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.3、B【解析】根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b图像过一、二、四,∴a<0,b>0,又∵反比例函数y=图像经过二、四象限,∴c<0,∴二次函数对称轴:>0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.4、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有
,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.5、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A、由图形顺时针旋转90°,可得出;故本选项不符合题意;
B、由图形逆时针旋转90°,可得出;故本选项不符合题意;
C、不能由如图图形经过旋转或平移得到;故本选项符合题意;
D、由图形顺时针旋转180°,而得出;故本选项不符合题意;
故选:C.【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.6、C【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.7、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【点睛】本题考查反比例函数的图像和性质.8、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.9、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;11、C【分析】先求出AB=1,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.【详解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四边形ABCD为正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置.∴点D的坐标为(﹣10,﹣3).故选:C.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,10°,90°,180°.12、A【分析】根据同弧所对的圆周角相等可得,再根据圆直径所对的圆周角是直角,可得,再根据三角形内角和定理即可求出的度数.【详解】∵∴∵AB是圆O的直径∴∴故答案为:A.【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.二、填空题(每题4分,共24分)13、y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14、【解析】根据概率的概念,由符合条件的人数除以样本容量,可得P(在日常生活中进行垃圾分类)==.故答案为.15、⊙O上或⊙O内【分析】直接利用反证法的基本步骤得出答案.【详解】解:用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,
首先应假设:若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O上或⊙O内.
故答案为:在⊙O上或⊙O内.【点睛】此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.16、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),
故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.17、【分析】由旋转的性质可得△BPQ是等边三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.【详解】解:连接PQ,由旋转的性质可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等边三角形,∴PQ=BP,在等边三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ与△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因为,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案为:【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.18、0<a<3.【解析】试题解析:∵二次函数的图象与坐标轴分别交于点(0,−3)、(−1,0),∴c=−3,a−b+c=0,即b=a−3,∵顶点在第四象限,又∵a>0,∴b<0,∴b=a−3<0,即a<3,故故答案为点睛:二次函数的顶点坐标为:三、解答题(共78分)19、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;(3)由题意过点D作DN⊥AC于N,DM⊥AB于M,继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.【详解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,即∠B=∠C=60°,∵D是BC的中点,∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中点G,连接DG,如下图,∵D为BC的中点,∴DG=AC=BD=CD,∴△BDG是等边三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴结论仍然成立.(3)如下图,过点D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键.20、(1)12;(2)作图见详解;(3).【分析】(1)先以AB为底,计算三角形的高,利用面积公式即可求出△ABC的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0),可知底AB=6,高为4,所以△ABC的面积为12;(2);(3)根据相似比为1:2,可知P.【点睛】本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.21、见解析【分析】根据方程的系数结合根的判别式,可得出△=(t-3)2≥1,由此可证出:对于任意实数t,方程都有实数根.【详解】证明:△=[-(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2,∴对于任意实数t,都有(t﹣3)2≥1,∴方程都有实数根.【点睛】本题考查了根的判别式,解题的关键是:牢记“当△≥1时,方程有实数根”.22、(1)5;(2)【分析】(1)按顺序先分别进行绝对值化简,0次幂运算,代入特殊角的三角函数值,进行立方根运算,然后再按运算顺序进行计算即可.(2)根据化简方程,从而求得方程的解.【详解】(1)(2)解得,【点睛】本题考查了实数的混合运算以及一元二次方程的解法,掌握实数的混合运算法则以及一元二次方程化简运算方法是解题的关键.23、(1);(2)这个游戏对甲、乙两人公平,理由见解析.【解析】(1)根据四个球中奇数的个数,除以总个数得到所求概率即可;
(2)列表得出所有等可能的情况数,找出两次摸出标号数字同为奇数或偶数的情况数,以及一奇一偶的情况数,分别求出两人获胜的概率,比较即可.【详解】(1)∵标号分别为1,2,3,4的四个球中奇数为1,3,共2个,∴P(摸到标号数字为奇数)==(2)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025劳动者劳务合同范本
- 2025关于海上货物运输租赁合同
- 2025年劳动合同试用期限是多久
- 2025年关于跨国公司合同范本
- 2025年BIM工程师之BIM工程师题库检测试卷B卷附答案
- 《内分泌系统调节》课件
- 上海初一科学试卷及答案
- 2025居间保险合同范本
- 盾构机施工中的隧道工程地质灾害应急响应考核试卷
- 精神康复效果评估考核试卷
- 电子书 -《商业的底层逻辑》
- 农贸市场消防应急预案演练总结
- 2023年湖北宜昌高新区社区专职工作人员(网格员)招聘考试真题及答案
- 外贸谈判知识分享课件
- 《患者疼痛管理》课件
- 基于AI人工智能的智慧园区融合感知平台建设方案
- JB T 7689-2012悬挂式电磁除铁器
- 课件-错账更正
- 现代汉语语料库词频表CorpusWordlist
- GB/T 5465.2-2023电气设备用图形符号第2部分:图形符号
- 学校德育活动安排表
评论
0/150
提交评论