版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a22.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.63.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若,,以顶点为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A. B. C. D.4.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄1314151617人数12231A.16,15 B.16,14 C.15,15 D.14,155.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.26.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表.则甲、乙、丙3名运动员测试成绩最稳定的是()甲的成绩乙的成绩丙的成绩环数78910环数78910环数78910频数4664频数6446频数5555A.甲 B.乙 C.丙 D.3人成绩稳定情况相同7.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x,根据题意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=498.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.9.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35° B.55° C.145° D.70°10.已知x1,x2是一元二次方程的两根,则x1+x2的值是()A.0 B.2 C.-2 D.411.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有()①②③④∽A.1个 B.2个 C.3个 D.4个12.如下所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组 B.2组 C.3组 D.4组二、填空题(每题4分,共24分)13.点P(4,﹣6)关于原点对称的点的坐标是_____.14.如图,在中,交于点,交于点.若、、,则的长为_________.15.若圆锥的底面周长是10,侧面展开后所得的扇形圆心角为90°,则该圆锥的侧面积是__________。16.如图,在扇形中,,正方形的顶点是的中点,点在上,点在的延长线上,当正方形的边长为时,则阴影部分的面积为_________.(结果保留)17.方程的解是________.18.若,则__________.三、解答题(共78分)19.(8分)某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:⑴求y与x之间的函数关系式,并写出自变量x的取值范围;⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg?⑶设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?20.(8分)组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?21.(8分)计算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°22.(10分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.23.(10分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.24.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.25.(12分)已知抛物线的顶点在第一象限,过点作轴于点,是线段上一点(不与点、重合),过点作轴于点,并交抛物线于点.(1)求抛物线顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围;(2)若直线交轴的正半轴于点,且,求的面积的取值范围.26.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已如函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.2、D【解析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.3、A【分析】由题意可知C(0,0),且过点(2,3),设该抛物线的解析式为y=ax2,将两点代入即可得出a的值,进一步得出解析式.【详解】根据题意,得该抛物线的顶点坐标为C(0,0),经过点(2,3).设该抛物线的解析式为y=ax2.3=a22.a=.该抛物线的解析式为y=x2.故选A.【点睛】本题考查了二次函数的应用,根据题意得出两个坐标是解题的关键.4、A【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.5、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.6、A【分析】先算出甲、乙、丙三人的方差,比较方差得出最稳定的人选.【详解】由表格得:甲的平均数=甲的方差=同理可得:乙的平均数为:8.5,乙的方差为:1.45丙的平均数为:8.5,乙的方差为:1.25∴甲的方差最小,即甲最稳定故选:A【点睛】本题考查根据方差得出结论,解题关键是分别求解出甲、乙、丙的方差,比较即可.7、B【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润的年平均增长率为x,然后根据已知条件可得出方程.【详解】解:依题意得七月份的利润为25(1+x)2,
∴25(1+x)2=1.
故选:B.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.8、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.9、D【解析】∵∠C=35°,∴∠AOB=2∠C=70°.故选D.10、B【解析】∵x1,x1是一元二次方程的两根,∴x1+x1=1.故选B.11、B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,∴∵是的中点,∴BE=CE∴CE2=AB•CF,∴②正确;
∵BE=CE=BC,∴CF=BE=CD,故③错误;∵∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正确.
∴②与④正确.
∴正确结论的个数有2个.
故选:B.【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.12、C【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.①②③是只是中心对称图形,④只是轴对称图形,故选C.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题(每题4分,共24分)13、(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P(4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.14、6【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【详解】,∵DE∥BC,∴,即,解得:,故答案为:.【点睛】本题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.15、100π【分析】圆锥侧面展开图的弧长=底面周长,利用弧长公式即可求得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷1.【详解】解:设扇形半径为R.
∵底面周长是10π,扇形的圆心角为90°,
∴10π=×1πR,∴R=10,
∴侧面积=×10π×10=100π,
故选:C.【点睛】本题利用了圆的周长公式和扇形面积公式求解.16、【分析】连结OC,根据等腰三角形的性质可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=-×4×4=4π-1,故答案为4π-1.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.17、.【分析】方程去分母转化为整式方程,求出整式方程的解得到的值,经检验得到分式方程的解.【详解】去分母得:,解得:,经检验是的根,所以,原方程的解是:.故答案是为:【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、【分析】设=k,可得a=3k,b=4k,c=5k,代入所求代数式即可得答案.【详解】设=k,∴a=3k,b=4k,c=5k,∴=,故答案为:【点睛】本题考查了比例的性质,常用的比例性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质;熟练掌握比例的性质是解题关键.三、解答题(共78分)19、(1)y=-2x+1,10≤x≤2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元.【分析】(1)根据一次函数过(12,36)(14,32)可求出函数关系式,然后验证其它数据是否符合关系式,进而确定函数关系式,(2)根据总利润为168元列方程解答即可,(3)先求出总利润W与x的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【详解】(1)设关系式为y=kx+b,把(12,36),(14,32)代入得:,解得:k=-2,b=1,∴y与x的之间的函数关系式为y=-2x+1,通过验证(15,30)(17,26)满足上述关系式,因此y与x的之间的函数关系式就是y=-2x+1.自变量的取值范围为:10≤x≤2.(2)根据题意得:(x-10)(-2x+1)=168,解得:x=16,x=24舍去,答:获得平均每天168元的利润,售价应定为16元/kg;(3)W=(x-10)(-2x+1)=-2x2+80x-10=-2(x-20)2+200,∵a=-2<0,抛物线开口向下,对称轴为x=20,在对称轴的左侧,y随x的增大而增大,∵10≤x≤2,∴当x=2时,W最大=-2(2-20)2+200=192元,答:W与x之间的函数关系式为W=-2(x-20)2+200,当该商品销售单价定为2元时,才能使经销商所获利润最大,最大利润是192元.【点睛】考查一次函数、二次函数的性质,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.20、比赛组织者应邀请8个队参赛.【解析】本题可设比赛组织者应邀请x队参赛,则每个队参加(x-1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.解:设比赛组织者应邀请个队参赛.依题意列方程得:,解之,得,.不合题意舍去,.答:比赛组织者应邀请8个队参赛.“点睛”本题是一元二次方程的求法,虽然不难求出x的值,但要注意舍去不合题意的解.21、(1)0;(2)【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.【详解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.22、(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3).【解析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出,即可证得CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,利用(1)的方法进行证明即可;(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得,的长,再根据,进行计算即可得.【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形对角线平分对角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)连接AC交BD于点O,CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键.23、【分析】根据平行证出△CDK∽△DAH,利用相似比即可得出答案.【详解】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴,即,∴CK=答:KC的长为步.【点睛】本题主要考查的是相似三角形的应用,难度适中,解题关键是找出相似三角形.24、(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根据点,利用待定系数法求解即可;(2)先根据函数解析式求出点C、D坐标,再将过点D作y轴的平行线交BC于点E,利用待定系数法求出直线BC的函数解析式,从而得出点E坐标,然后根据得出的面积表达式,最后利用二次函数的性质求出的面积取最大值时m的值,从而可得点D坐标;(3)根据平行四边形的定义分两种情况:BD为平行四边形的边和BD为平行四边形的对角线,然后先分别根据平行四边形的性质求出点N坐标,从而即可求出点M坐标.【详解】(1)∵抛物线经过点∴解得故抛物线的解析式为;(2)的面积存在最大值.求解过程如下:,当时,由题意,设点D坐标为,其中如图1,过点D作y轴的平行线交BC于点E设直线BC的解析式为把点代入得解得∴直线BC的解析式为∴可设点E的坐标为由二次函数的性质可知:当时,随m的增大而增大;当时,随m的增大而减小则当时,取得最大值,最大值为6此时,故的面积存在最大值,此时点D坐标为;(3)存在.理由如下:由平行四边形的定义,分以下两种情况讨论:①当BD是平行四边形的一条边时如图2所示:M、N分别有三个点设点∴点N的纵坐标为绝对值为6即解得(与点D重合,舍去)或或则点的横坐标分别为∴点M坐标为或或即点M坐标为或或②如图3,当BD是平行四边形的对角线时∴此时,点N与C重合,,且点M在点B右侧,即综上,存在这样的点M,使得以点为顶点的四边形是平行四边形.点M坐标为或或或.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质、平行四边形的定义与性质等知识点,较
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国创业培训课件
- 全员安全培训隐患课件
- 聊天沟通话术
- 人工智能概论课程
- 全员保密安全教育培训记录课件
- 西班牙语翻译就业前景解析
- 医生微党课案例
- 赞美医患关系的文章标题
- 克隆人技术的利弊
- 光纤通信技术课件
- 电影色彩学打印版
- 旅责险统保项目服务手册
- GB/T 3622-2012钛及钛合金带、箔材
- GB/T 31989-2015高压电力用户用电安全
- GB/T 22562-2008电梯T型导轨
- GB/T 14155-2008整樘门软重物体撞击试验
- GB/T 11638-2020乙炔气瓶
- 蓝色简约风110宣传日介绍PPT模板
- 中国文化概论-张岱年课后习题答案
- 新版现代西班牙语第二册课后答案
- 不良品处理统计表Excel模板
评论
0/150
提交评论