2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题含解析_第1页
2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题含解析_第2页
2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题含解析_第3页
2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题含解析_第4页
2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省六安市霍邱县九上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度2.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数为()A.140° B.135° C.130° D.125°3.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为()A.4.8m B.6.4m C.9.6m D.10m4.2020的相反数是()A. B. C.-2020 D.20205.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A. B. C. D.6.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.7.下列说法正确的是()A.若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B.可能性很大的事件在一次试验中必然会发生C.相等的圆心角所对的弧相等是随机事件D.掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等8.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定9.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米10.半径为R的圆内接正六边形的面积是()A.R2 B.R2 C.R2 D.R2二、填空题(每小题3分,共24分)11.数据﹣3,6,0,5的极差为_____.12.当a=____时,关于x的方程式为一元二次方程13.已知两个相似三角形对应中线的比为,它们的周长之差为,则较大的三角形的周长为__________.14.点A(﹣2,3)关于原点对称的点的坐标是_____.15.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_______.16.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为_____.17.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.18.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.三、解答题(共66分)19.(10分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.20.(6分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.21.(6分)如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.22.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.23.(8分)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC.(1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.24.(8分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)…30405060…每天销售量(件)…500400300200…(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?25.(10分)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?26.(10分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x

参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.2、C【分析】根据圆周角定理可知,再由三角形的内角和可得,最后根据圆内接四边形的性质即可得.【详解】AB是半圆O的直径(圆周角定理)(圆内接四边形的对角互补)故选:C.【点睛】本题考查了圆周角定理、三角形的内角和定理、圆内接四边形的性质,掌握灵活运用各定理和性质是解题关键.3、C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】设树高为x米,所以x=4.8×2=9.6.这棵树的高度为9.6米故选C.【点睛】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.4、C【分析】根据相反数的定义选择即可.【详解】2020的相反数是-2020,故选C.【点睛】本题考查相反数的定义,注意区别倒数,绝对值,负倒数等知识,掌握概念是关键.5、A【解析】根据科学计数法的表示方法即可得出答案.【详解】根据科学计数法的表示方法可得:2135应该表示为2.135×103,故答案选择A.【点睛】本题考查的是科学计数法的表示方式:(,n为正整数).6、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.7、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断.【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误.B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C.【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键.8、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.9、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,

设这棵树的高度为xm,

则可列比例为解得,x=4.1.

故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.10、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【详解】解:如图示,连接OE、OD,

∵六边形ABCDEF是正六边形,

∴∠DEF=120°,

∴∠OED=60°,

∵OE=OD=R,

∴△ODE是等边三角形,

作OH⊥ED,则∴∴故选:C.【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据极差的定义直接得出结论.【详解】∵数据﹣3,6,0,5的最大值为6,最小值为﹣3,∴数据﹣3,6,0,5的极差为6﹣(﹣3)=1,故答案为1.【点睛】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.13、15【分析】利用相似三角形对应中线的比可得出对应周长的比,根据周长之差为10即可得答案.【详解】设较小的三角形的周长为x,∵两个相似三角形对应中线的比为1:3,∴两个相似三角形对应周长的比为1:3,∴较大的三角形的周长为3x,∵它们的周长之差为10,∴3x-x=10,解得:x=5,∴3x=15,故答案为:15【点睛】本题考查相似三角形的性质,相似三角形对应中线、高、周长的边都等于相似比;面积比等于相似比的平方.14、(2,﹣3)【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可.【详解】点P(-2,3)关于原点对称的点的坐标为(2,-3),故本题正确答案为(2,-3).【点睛】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.15、(0,-1)【分析】在平面直角坐标系中画出图形,根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标.【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中∴∴,∵,∴,∴,∴故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律.16、2或.【分析】根据题意可得分两种情况讨论:①当∠BPE=90°时,点B、P、F三点共线,②当∠PEB=90°时,证明四边形AEPF是正方形,进而可求得BP的长.【详解】根据E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,分两种情况讨论:①当∠BPE=90°时,如图1,点B、P、F三点共线,根据翻折可知:∵AF=PF=3,AB=4,∴BF=5,∴BP=BF﹣PF=5﹣3=2;②当∠PEB=90°时,如图2,根据翻折可知:∠FPE=∠A=90°,∠AEP=90°,AF=FP=3,∴四边形AEPF是正方形,∴EP=3,BE=AB﹣AE=4﹣3=1,∴BP===.综上所述:BP的长为:2或.故答案为:2或.【点睛】本题主要考查了折叠的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.17、y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为,∵所得的抛物线经过点(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函数的解析式为,故答案为.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。18、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.三、解答题(共66分)19、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.20、(1)证明见解析;(2)的半径为2.1.【分析】(1)连接,,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论.【详解】(1)证明:如图,连接,,过作于点.∵,是底边的中点,∴,∵是的切线,∴,∴.∴是的切线;(2)解:如图2,连接,过作于点.∵点是的中点,∴,∴∴,∴在和中,∴∴设的半径为由勾股定理得:DK2+OK2=OD2即,解得:.∴的半径为.【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键.21、(1)反比例函数的解析式为:y=;一次函数的解析式为:y=x﹣2;(2)S△AOB=;(2)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【分析】(1)把A的坐标代入y=,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S△AOB=S△AOD+S△BOD计算,即可求出答案;(2)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)∵反比例函数y=的图象过点A(1,1),∴1=,即k=1,∴反比例函数的解析式为:y=.∵一次函数y=x+b(k≠0)的图象过点A(1,1),∴1=1+b,解得b=﹣2,∴一次函数的解析式为:y=x﹣2;(2)∵令x=0,则y=﹣2,∴D(0,﹣2),即DO=2.解方程=x﹣2,得x=﹣1,∴B(﹣1,﹣1),∴S△AOB=S△AOD+S△BOD=×2×1+×2×1=;(2)∵A(1,1),B(﹣1,﹣1),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.22、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,则FO=,故图中阴影部分的面积为:.【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.23、(1)k的值为1,m的值为2;(2)点B的坐标为(3,4);(3)△ABC的面积是.【分析】(1)将点代入一次函数和反比例函数的解析式计算即可得;(2)先可得点B的横坐标,再将其代入一次函数解析式可求出纵坐标,即可得答案;(3)如图(见解析),过点A作于点D,先求出点C的坐标,再利用A、B、C三点的坐标可求出BC、AD的长,从而可得的面积.【详解】(1)是一次函数与反比例函数的公共点解得:故k的值为1,m的值为2;(2)∵直线轴于点,且与一次函数的图象交于点B∴点B的横坐标为3把代入得:故点B的坐标为;(3)如图,过点A作于点D依题意可得点C的横坐标为3把代入得:则又因AD的长等于点N的横坐标减去点A的横坐标,即则故的面积是.【点睛】本题考查了一次函数、反比例函数与几何图形的应用,依据已知点的坐标求出函数解析式中的未知数是解题关键.24、(1)y=﹣10x+800;(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元【分析】(1)直接利用待定系数法求解可得;(2)根据“总利润单件利润销售量”可得关于的一元二次方程,解之即可得.【详解】解:(1)设y=kx+b,根据题意可得,解得:,每天销售量与单价的函数关系为:y=﹣10x+800,(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过45元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【点睛】本题主要考查了一次函数及一元二次方程的应用,解题的关键是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论