黑龙江省黑河北安市2025届九上数学期末经典试题含解析_第1页
黑龙江省黑河北安市2025届九上数学期末经典试题含解析_第2页
黑龙江省黑河北安市2025届九上数学期末经典试题含解析_第3页
黑龙江省黑河北安市2025届九上数学期末经典试题含解析_第4页
黑龙江省黑河北安市2025届九上数学期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省黑河北安市2025届九上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)2.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.3.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.54.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.1205.如图,四边形与四边形是位似图形,则位似中心是()A.点 B.点 C.点 D.点6.在中,,,,则的值是()A. B. C. D.7.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°8.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π9.如图,在中,DE∥BC,,,,()A.8 B.9 C.10 D.1210.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.∶2 D.∶3二、填空题(每小题3分,共24分)11.已知直线y=kx(k≠0)与反比例函数y=﹣的图象交于点A(x₁,y₁),B(x₂,y₂)则2x₁y₂+x₂y₁的值是_____.12.若x=是一元二次方程的一个根,则n的值为____.13.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.14.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为.15.已知,则的值是_____.16.代数式a2+a+3的值为7,则代数式2a2+2a-3的值为________.17.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.18.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.三、解答题(共66分)19.(10分)小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.20.(6分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.(1)求该抛物线的解析式与顶点的坐标.(2)试判断的形状,并说明理由.(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.22.(8分)如图,在矩形中,是上一点,连接的垂直平分线分别交于点,连接.(1)求证:四边形是菱形;(2)若为的中点,连接,求的长.23.(8分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.(1)求证:∠BAC=∠AED;(2)在边AC取一点F,如果∠AFE=∠D,求证:.24.(8分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.以点为位似中心,在轴的左侧将放大得到,使得的面积是面积的倍,在网格中画出图形,并直接写出点所对应的点的坐标.在网格中,画出绕原点顺时针旋转的.25.(10分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,.求证.(先填空,再证明)证明:26.(10分)如图,菱形的顶点在菱形的边上,与相交于点,,若,,求菱形的边长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.2、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.3、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.4、D【分析】设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2﹣x)cm,根据长方形的面积公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.【详解】设围成面积为acm2的长方形的长为xcm,则宽为(40÷2﹣x)cm,依题意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故选D.5、B【分析】根据位似图形的定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形,这个点叫做位似中心,判断即可.【详解】解:由图可知,对应边AG与CE的延长线交于点B,∴点B为位似中心故选B.【点睛】此题考查的是找位似图形的位似中心,掌握位似图形的定义是解决此题的关键.6、D【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,

∴,∴,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.7、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算8、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.9、D【分析】先由DE∥BC得出,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.10、A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF与△ABC的面积之比等于:故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.二、填空题(每小题3分,共24分)11、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A、B关于原点成中心对称,则有x₂=﹣x₁,y₂=﹣y₁.由A(x₁,y₂)在双曲线y=﹣上可得x₁y₁=﹣5,然后把x₂=﹣x₁,y₂=﹣y₁代入2x₁y₂+x₂y₁的就可解决问题.【详解】解:∵直线y=kx(k>0)与双曲线y=﹣都是以原点为中心的中心对称图形,∴它们的交点A、B关于原点成中心对称,∴x₂=﹣x₁,y₂=﹣y₁.∵A(x₁,y₁)在双曲线y=﹣上,∴x₁y₁=﹣5,∴2x₁y₂+x₂y₁=2x₁(﹣y₁)+(﹣x₁)y₁=﹣3x₁y₁=1.故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A、B关于原点成中心对称是解决本题的关键.12、.【分析】把代入到一元二次方程中求出的值即可.【详解】解:∵是一元二次方程的一个根,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键.13、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.

故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.14、【分析】△ABC绕点O逆时针旋转一周需6秒,而2018=6×336+2,所以第2018秒时,点A旋转到点A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,然后通过解直角三角形求出A′H和OH即可得到A′点的坐标.【详解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒时,点A旋转到点B,如图,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案为(﹣,﹣).【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.15、【解析】因为已知,所以可以设:a=2k,则b=3k,将其代入分式即可求解.【详解】∵,∴设a=2k,则b=3k,∴.故答案为.【点睛】本题考查分式的基本性质.16、3【分析】先求得a2+a=1,然后依据等式的性质求得2a3+2a=2,然后再整体代入即可.【详解】∵代数式a2+a+3的值为7,∴a2+a=1.∴2a3+2a=2.∴2a3+2a-3=2-3=3.故答案为3.【点睛】本题主要考查的是求代数式的值,整体代入是解题的关键.17、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.18、y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为y=-x+2(答案不唯一).三、解答题(共66分)19、这个游戏对双方不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小亮胜的概率为,∵≠,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.20、(1),;(2)是直角三角形,理由见解析;(3)存在,.【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标.(2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可.(3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标.【详解】(1)设抛物线的解析式为.由抛物线与y轴交于点,可知即抛物线的解析式为把代入解得∴抛物线的解析式为∴顶点D的坐标为(2)是直角三角形.过点D分别作x轴、y轴的垂线,垂足分别为E、F在中,∴在中,∴在中,∴∴∴是直角三角形.(3)连接AC,根据两点的距离公式可得:,则有,可得,得符合条件的点为.过A作交y轴正半轴于,可知,求得符合条件的点为过C作交x轴正半轴于,可知,求得符合条件的点为∴符合条件的点有三个:.【点睛】本题考查了抛物线的综合问题,掌握抛物线的性质以及解法是解题的关键.21、(1)证明见解析;(2)AD=2.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.22、(1)证明见解析;(2)1.【分析】(1)先根据矩形的性质、平行线的性质可得,再根据垂直平分线的性质可得,然后根据三角形全等的判定定理与性质可得,最后根据平行四边形的判定、菱形的判定即可得证;(2)先根据三角形中位线定理可得,再根据矩形的性质可得,然后在中,利用勾股定理即可得.【详解】(1)四边形是矩形垂直平分四边形是平行四边形又四边形是菱形;(2)垂直平分是的中点是的中点,(三角形中位线定理).【点睛】本题考查了矩形的性质、菱形的判定、三角形全等的判定定理与性质、三角形中位线定理等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.23、见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论