2022年河南省新乡市第七中学数学九上期末达标检测模拟试题含解析_第1页
2022年河南省新乡市第七中学数学九上期末达标检测模拟试题含解析_第2页
2022年河南省新乡市第七中学数学九上期末达标检测模拟试题含解析_第3页
2022年河南省新乡市第七中学数学九上期末达标检测模拟试题含解析_第4页
2022年河南省新乡市第七中学数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(

)A.2 B.1 C.32-2.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:13.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y=-x2+x+.则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m4.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)5.如图,二次函数的图象过点,下列说法:①;②;③若是抛物线上的两点,则;④当时,.其中正确的个数为()

A.4 B.3 C.2 D.16.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA7.关于反比例函数,下列说法不正确的是()A.y随x的增大而减小 B.图象位于第一、三象限C.图象关于直线对称 D.图象经过点(-1,-5)8.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.9.在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A点的对应点A′坐标为()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)10.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.12.关于x的一元二次方程的一个根为1,则方程的另一根为______.13.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.14.如图所示,在中,,垂直平分,交于点,垂足为点,,,则等于___________.15.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.16.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.17.若,则的值为_____.18.=___三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.20.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.21.(6分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.22.(8分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.23.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.24.(8分)如图,已知一次函数分别交、轴于、两点,抛物线经过、两点,与轴的另一交点为.(1)求、的值及点的坐标;(2)动点从点出发,以每秒1个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为秒.①当为何值时,线段长度最大,最大值是多少?(如图1)②过点作,垂足为,连结,若与相似,求的值(如图2)25.(10分)(1)解方程(2)计算26.(10分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.2、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【详解】设原矩形的长为2a,宽为b,

则对折后的矩形的长为b,宽为a,

∵对折后所得的矩形与原矩形相似,

∴,

∴大矩形与小矩形的相似比是:1;

故选A.【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.3、D【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【详解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1.又x>0,解得x=2.故选D.4、D【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.5、B【分析】根据二次函数的性质对各项进行判断即可.【详解】A.∵函数图象过点,∴对称轴为,可得,正确;B.∵,∴当,,正确;C.根据二次函数的对称性,的纵坐标等于的纵坐标,∵,所以,错误;D.由图象可得,当时,,正确;故答案为:B.【点睛】本题考查了二次函数的问题,掌握二次函数的图象以及性质是解题的关键.6、A【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点睛】本题考查三角函数的定义,熟记定义是解题的关键.7、A【分析】根据反比例函数的图像及性质逐个分析即可.【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;选项B:,故图像经过第一、三象限,所以选项B正确;选项C:反比例函数关于直线对称,故选项C正确;选项D:将(-1,-5)代入反比例函数中,等号两边相等,故选项D正确.故答案为:A.【点睛】本题考查了反比例函数的性质;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.8、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.9、A【分析】根据相似比为2,B′的坐标为(﹣6,0),判断A′在第三象限即可解题.【详解】解:由题可知OA′:OA=2:1,∵B′的坐标为(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A′的象限是解题关键.10、D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.二、填空题(每小题3分,共24分)11、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【详解】由题意可得,

△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),

∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),

∵301÷3=100…1

∴旋转第301次的直角顶点的坐标为:(1200,0),

故答案为:(1200,0).【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.12、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.13、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.14、3cm【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线性质求出,求出,求出∠EAC,根据含30°角的直角三角形的性质求解即可.【详解】∵在△ABC中,∵垂直平分,故答案为:3cm.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.15、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则点O到三边的距离就是△AOC,△BOC,△AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:AC•x+BC•x+AB•x=AC•BC,由题意可得:AC=4,BC=3,AB=5∴×4•x+×3•x+×5•x=×3×4解得:x=1.故答案为:1.【点睛】本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径=.16、【分析】利用概率公式直接写出答案即可.【详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接、,分别取、、的中点即可画出△,(2)利用正弦函数的定义可知.由,即可解决问题.【详解】解:(1)连接OA、OC,分别取OA、OB、OC的中点、、,顺次连接、、,△即为所求,如图所示,(2),,,,.,.【点睛】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.注意:记住锐角三角函数的定义,属于中考常考题型.20、答案见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm.【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为xcm,∴y=10×x+1×11•x﹣1×x•x=﹣3x1+54x,即y与x之间的函数关系式为y=﹣3x1+54x;(1)根据题意,得:﹣3x1+54x=×10×11,整理,得:x1﹣18x+31=0,解得:x1=1,x1=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为1cm.考点:根据实际问题列二次函数关系式;一元二次方程的应用.22、(1)作图见解析(2)作图见解析(3)【分析】(1)利用等腰三角形的性质得出对应点位置,进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而得出答案.【详解】(1)如图所示:△ABC即为所求;(2)如图所示:△DFE,即为所求;(3)CF=.【点睛】本题考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题的关键.23、(1)见解析;(2)1【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-1.又在直角△ABC中,根据勾股定理,得(b+c)2﹣2bc=()2,由此可以求得k的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k﹣1)=4k2﹣12k+11=(2k﹣1)2+4,∴无论k取什么实数值,总有=(2k﹣1)2+4>0,即△>0,∴无论k取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b和c恰好是方程x2﹣(2k+1)x+4k﹣1=0的两个根,得∴b+c=2k+1,bc=4k﹣1,又∵在直角△ABC中,根据勾股定理,得b2+c2=a2,∴(b+c)2﹣2bc=()2,即(2k+1)2﹣2(4k﹣1)=11,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=1,当k=﹣2时,b+c=﹣4+1=﹣1<0,不符合题意,舍去,当k=1时,b+c=2×1+1=7,符合题意,故k=1.【点睛】此题考查根的判别式,掌握运算法则是解题关键24、(1)2,3,;(2)①时,长度最大,最大值为;②或【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论