




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.2.如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()A.1: B.1:3 C.1:8 D.1:93.有一组数据:2,﹣2,2,4,6,7这组数据的中位数为()A.2 B.3 C.4 D.64.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是()A.1 B.﹣4 C.3 D.45.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处6.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米8.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°9.如图,PA、PB都是⊙O的切线,切点分别为A、B.四边形ACBD内接于⊙O,连接OP则下列结论中错误的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB10.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1,y2的大小二、填空题(每小题3分,共24分)11.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是______.12.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.13.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.14.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.15.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是_____.16.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).17.若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是___.18.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.三、解答题(共66分)19.(10分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到,两个书店做志愿者服务活动.(1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)20.(6分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.21.(6分)学校要在教学楼侧面悬挂中考励志的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为,点C的仰角为,求标语牌BC的宽度(结果保留根号)
22.(8分)(操作发现)如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=____.(问题解决)(3)如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)23.(8分)计算:﹣12119+|﹣2|+2cos31°+(2﹣tan61°)1.24.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.25.(10分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.26.(10分)如图,与是位似图形,点O是位似中心,,,求DE的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据弧长公式计算即可.【详解】解:该扇形的弧长=.故选C.【点睛】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).2、C【分析】易证△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,继而求得S△ADE:S四边形BCED的值.【详解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.3、B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:将这组数据排序得:﹣2,2,2,4,6,7,处在第3、4位两个数的平均数为(4+2)÷2=3,故选:B.【点睛】考查中位数的意义和求法,找一组数据的中位数需要将这组数据从小到大排列后,处在中间位置的一个数或两个数的平均数即为中位数.4、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a的最大值为4,故选:D.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.5、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.
故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.8、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.9、D【分析】连接,,根据PA、PB都是⊙O的切线,切点分别为A、B,得到,,所以A,C正确;根据得到,即,所以B正确;据此可得答案.【详解】解:如图示,连接,,、是的切线,,,所以A,C正确;又∵,,∴在四边形APBO中,,即,所以B正确;∵D为任意一点,无法证明,故D不正确;故选:D.【点睛】本题考查了圆心角和圆周角,圆的切线的性质和切线长定理,熟悉相关性质是解题的关键.10、A【分析】根据一次函数图象的增减性判断即可.【详解】∵k=﹣3<0,∴y值随x值的增大而减小,又∵x1<x1,∴y1>y1.故选:A.【点睛】本题考查一次函数图象的增减性,关键在于先判断k值再根据图象的增减性判断.二、填空题(每小题3分,共24分)11、【分析】根据降价后的价格=降价前的价格×(1-降价的百分率),则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即可.【详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.13、【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.【详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,∴∠EMF=∠GNE=90°∵四边形ABCD是平行四边形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG为EF逆时针旋转120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴当点N与点D重合时,使线段DG最小,如图所示,此时,故答案为:.【点睛】本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.14、1.【分析】根据口袋中有3个白球和若干个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.【详解】设袋中红球有x个,根据题意,得:,解得:x=1,经检验:x=1是分式方程的解,所以袋中红球有1个,故答案为1.【点睛】此题考查利用频率估计概率,解题关键在于利用红球在总数中所占比例进行求解.15、.【分析】根据关于x的不等式组有解,得出b≤x≤a+1,根据题意列出树状图得出所有等情况数和关于x的不等式组有解的情况数,再根据概率公式即可得出答案.【详解】解:∵关于x的不等式组有解,∴b≤x≤a+1,根据题意画图如下:共有12种等情况数,其中关于x的不等式组有解的情况分别是,,,,,,,,共8种,则有解的概率是;故答案为:.【点睛】本题考查了不等式组的解和用列举法求概率,熟练掌握并灵活运用是解题的关键.16、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).17、【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】解:∵方程x2−2x+m=0有两个不相同的实数根,∴△=(−2)2−4m>0,解得:m<1.故答案为:m<1.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.18、120°【分析】利用圆周角定理得到∠BAC=∠BOC,再利用∠BAC+∠BOC=180°可计算出∠BOC的度数.【详解】解:∵∠BAC和∠BOC所对的弧都是,∴∠BAC=∠BOC∵∠BAC+∠BOC=180°,∴∠BOC+∠BOC=180°,∴∠BOC=120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)用树状图列出所有可能的情况,然后即可得出其概率;(2)用树状图列出所有可能的情况,然后即可得出其概率.【详解】(1)(2人选择不同的书店)(2)(3人选择同一书店)【点睛】此题主要考查利用树状图求概率,熟练掌握,即可解题.20、(1)1,1,0(2)作图见解析(3)必过点.(答案不唯一)(4)【分析】(1)根据待定系数法求出的值,再代入和,即可求出m、n的值;(2)根据描点法画出函数的图象即可;(3)根据(2)中函数的图象写出其中一个性质即可;(4)利用图象法,可得函数与有三个不同的交点,根据二次函数的性质求解即可.【详解】(1)将代入中解得∴当时,当时,;(2)如图所示;(3)必过点;(4)设直线,由(1)得∵方程有三个不同的解∴函数与有三个不同的交点根据图象即可知,当方程有三个不同的解时,故.【点睛】本题考查了函数的图象问题,掌握待定系数法、描点法、图象法、二次函数的性质是解题的关键.21、BC=【分析】根据正切的定义求出,根据等腰直角三角形的性质求出,结合图形计算,得到答案.【详解】解:由题意知,PD=20,,在中,,则,在中,,,,故答案为:.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22、(1)如图,△AB′C′即为所求;见解析;(1)45°;(3)S△APC=.【解析】(1)如图所示,△AB′C′即为所求;(1)利用等腰三角形的性质即可解决问题;【问题解决】结论:PA1+PB1=PC1.证法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;证法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.【详解】(1)如图,△AB′C′即为所求;(1)∵△ABB′是等腰直角三角形,
∴∠AB′B=45°.
故答案为45°;(3)如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣110°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC∵∠APC=90°,∴AP1+PC1=AC1,即(PC)1+PC1=71,∴PC=,∴AP=,∴S△APC=AP•PC=【点睛】本题考查旋转的性质、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是熟练掌握旋转的性质,属于中考常考题型.23、2【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=﹣1+2﹣+1=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆买卖销售合同协议书
- 学校承包印刷合同协议书
- 开店股东合同协议书模板
- 县残联用工合同协议书
- 宁波金刚石项目商业计划书
- 卖木材合同协议书怎么写
- 无人机植保农药喷洒商业计划书
- 酒店团队合同协议书范本
- 新闻策划合同协议书范本
- 养禽与禽病防治技术题库
- 数据中心的网络管理实践试题及答案
- 2025年河北省启光二模语文
- 2025-2030沉香木行业市场深度调研及前景趋势与投资研究报告
- 2024年中考二模 历史(四川成都卷)(考试版A4)
- 安徽省黄山市区县2025届七年级生物第二学期期末联考试题含解析
- 粉刷墙面施工协议书
- 辅导机构招聘合同协议
- 青年创新意识的培养试题及答案
- 《2025年CSCO肾癌诊疗指南》解读课件
- 村干部测试试题及答案
- 《新能源汽车发展历程》课件
评论
0/150
提交评论