版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省开江县九上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.2.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.18° B.24° C.30° D.26°3.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.164.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.105.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.106.下列约分正确的是()A. B. C. D.7.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1758.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则()A. B. C. D.9.某正多边形的一个外角的度数为60°,则这个正多边形的边数为()A.6 B.8 C.10 D.1210.一元二次方程有一根为零,则的值为()A. B. C.或 D.或二、填空题(每小题3分,共24分)11.如图,,如果,那么_________________.12.写出一个二次函数关系式,使其图象开口向上_______.13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.15.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.16.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的是______________(只填序号)17.如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为.18.如图,已知直线y=mx与双曲线y=一个交点坐标为(3,4),则它们的另一个交点坐标是_____.三、解答题(共66分)19.(10分)如图,已知Rt△ABO,点B在轴上,∠ABO=90°,∠AOB=30°,OB=,反比例函数的图象经过OA的中点C,交AB于点D.(1)求反比例函数的表达式;(2)求△OCD的面积;(3)点P是轴上的一个动点,请直接写出使△OCP为直角三角形的点P坐标.20.(6分)如图,在平面直角坐标系中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1).(1)把平移后,其中点移到点,面出平移后得到的;(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和).21.(6分)某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.22.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.23.(8分)关于的一元二次方程.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求方程的另一根及的值.24.(8分)如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=,tan37°=)25.(10分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?26.(10分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.2、B【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.3、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【点睛】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.4、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,
∴,
∵CD⊥AB,
∴,
∴,
∴,
∵,BC=6,
∴,∴,∴,∵,∴,∴.
故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.5、A【解析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质6、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.7、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故根据题意可列方程为:50+50(1+x)+50(1+x)2=1.故选D.【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.8、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【详解】解:∵点A、B、C为反比例函数(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,
∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,
∴S1=S2<S3,∴,故选:C.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.9、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360,∴,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.10、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【点睛】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.二、填空题(每小题3分,共24分)11、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.12、【分析】抛物线开口向上,则二次函数解析式的二次项系数为正数,据此写二次函数解析式即可.【详解】∵图象开口向上,∴二次项系数大于零,∴可以是:(答案不唯一).故答案为:.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.13、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键15、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。16、①③④【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-=1,即b=-2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y>0,
即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x=-=1,即b=-2a,
∴3a+b=3a-2a=a,所以②错误;
∵抛物线的顶点坐标为(1,n),
∴=n,
∴b2=4ac-4an=4a(c-n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故答案为:①③④.【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握运算法则.17、1【分析】根据抛物线的对称性知:四边形ODBG的面积应该等于四边形ODEF的面积;由图知△ABG和△BCD的面积和是四边形ODBG与矩形OCBA的面积差,由此得解.【详解】解:由于抛物线的对称轴是y轴,根据抛物线的对称性知:S四边形ODEF=S四边形ODBG=10;∴S△ABG+S△BCD=S四边形ODBG-S四边形OABC=10-6=1.【点睛】本题考查抛物线的对称性,能够根据抛物线的对称性判断出四边形ODEF、四边形ODBG的面积关系是解答此题的关键.18、(﹣3,﹣4)【分析】根据反比例函数与正比例函数的中心对称性解答即可.【详解】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),则另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).【点睛】本题考查了反比例函数和正比例函数的性质,通过数形结合和中心对称的定义很容易解决.反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.三、解答题(共66分)19、(1);(2)面积为;(3)P(2,0)或(4,0)【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S△OCD=S△AOB-S△ACD-S△OBD;(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,∴AB=OB=2,作CE⊥OB于E,
∵∠ABO=90°,
∴CE∥AB,
∴OC=AC,
∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为;(2)∵OB=,∴D的横坐标为,代入得,y=,∴D(,),∴BD=,∵AB=,∴AD=,∴S△OCD=S△AOB-S△ACD-S△OBD=OB•AB-AD•BE-BD•OB=(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),
∴P(2,0).
当∠OCP=90°时.
∵C(2,2),
∴∠COB=45°.
∴△OCP为等腰直角三角形.
∴P(4,0).
综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.20、(1)详见解析;(2)画图详见解析,【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC,利用点A和的坐标关系可判断△ABC先向右平移3个单位,再向上平移2个单位得到,利用此平移规律找到的坐标,然后描点即可得到;(2)按要求画即可,其中旋转90度是关键,根据弧长公式计算即可.【详解】解:(1)如图,即为所求.(2)如图,即为所求,∵绕点按逆时针方向旋转得,∴点经过的路径长是圆心角为90°,半径为:的扇形的弧长,∴.即点经过的路径长为:【点睛】本题考查了平移变换、旋转变换,解题关键在于掌握作图法则.21、(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元【分析】(1)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况列出一元二次方程确定售价即可;(2)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况设每天的毛利为w元,涨价和降价两种情况列出二次函数求出售价进行比较即可确定售价和最大毛利.【详解】解:(1)根据题意,得①设售价涨价x元,(20﹣15+x)(450﹣50x)=2400解得x1=1,x2=3,∵调整价格也兼顾顾客利益,∴x=1,则售价为21元;②设售价降价y元,(20﹣15﹣y)(450+150y)=2400解得y1=y2=1,则售价为19元;答:调整价格也兼顾顾客利益,售价应定为19元.(2)根据题意,得①设售价涨价x元时,每天的毛利为w1元,w1=(20﹣15+x)(450﹣50x)=﹣50x2+200x+2250=﹣50(x﹣2)2+1.当售价涨价2元,即售价为22元时,毛利最大,最大毛利为1元;②设售价降价y元时,每天的毛利为w2元,w2=(20﹣15﹣y)(450+150y)=﹣150y2+300y+2250=﹣150(y﹣1)2+2400当降价为1元时,即售价为19元时,毛利最大,最大毛利为2400元.综上所述,售价为22元时,毛利最大,最大毛利为1元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,解决本题的关键是找到题目中蕴含的等量关系,熟练掌握二次函数的性质,能够将一般式转化为顶点式.22、(1)8;(2);(3)【分析】(1)根据D等级的人数除以其百分比得到班级总人数,再乘以B等级的百分比即可得a的值;(2)用C等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为人,B等级的人数为人,故a的值为8;(2)∴C等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P(一男一女)答:恰好选中一男一女参加比赛的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率为.也考查了统计图.23、(1)证明见解析;(2)另一根为4,为.【分析】(1)判断是否大于0即可得出答案;(2)将x=1代入方程求解即可得出答案.【详解】解:(1)∵∴∵∴故此方程必有两个不相等的实数根;(2)把代入原方程,∴,即,,∴,故方程的另一根为4,为.【点睛】本题考查的是一元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内江市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解ab卷
- 大同市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解
- 喀什地区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(基础题)
- 新余市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解
- 2026年韶关市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(研优卷)
- 遵义市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(研优卷)
- 牡丹江市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解
- 黄南州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(轻巧夺冠)
- 四川省农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(综合卷)
- 2026年黄山市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(突破训练)
- 2025全国学生学宪法讲宪法知识竞赛题库及答案
- 2025年9月浙江嘉兴海宁市通程港口经营有限公司招聘3人备考考试题库附答案解析
- 2025年大学辅导员招聘考试题库:学生心理危机干预方案设计试题
- 2024-2025学年广东省广大附中大联盟九年级(上)期中联考道法试题及答案
- 2025年云南省高考地理试卷(含答案)
- 2025贵州黔西南州州直机关面向全州遴选公务员31人考试参考试题及答案解析
- 汴京的星河解析课件
- 亚马逊培训考试题及答案
- 餐饮行业人力资源管理-招聘、培训和留住员工
- 建筑企业税收调研报告及政策解析
- 2025比亚迪供应商审核自查表
评论
0/150
提交评论