版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在□ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5 B.2:3 C.3:4 D.3:22.二次函数的图像如图所示,它的对称轴为直线,与轴交点的横坐标分别为,,且.下列结论中:①;②;③;④方程有两个相等的实数根;⑤.其中正确的有()A.②③⑤ B.②③ C.②④ D.①④⑤3.圆锥的底面半径为2,母线长为6,它的侧面积为()A. B. C. D.4.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.205.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、26.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm7.如图,已知在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么CP长的取值范围是()A.0<CP≤1 B.0<CP≤2 C.1≤CP<8 D.2≤CP<88.下列方程中,关于x的一元二次方程的是()A.x+=2 B.ax2+bx+c=0C.(x﹣2)(x﹣3)=0 D.2x2+y=19.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A. B. C. D.10.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110° B.140° C.35° D.130°11.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1•y2<0 D.<012.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若OA=2,则四边形CODE的周长为()A.4 B.6 C.8 D.10二、填空题(每题4分,共24分)13.75°的圆心角所对的弧长是2.5cm,则此弧所在圆的半径是_____cm.14.b和2的比例中项是4,则b=__.15.____.16.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.17.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.18.若是方程的一个根,则代数式的值等于______.三、解答题(共78分)19.(8分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,(1)在图①中画一个的角,使点或点是这个角的顶点,且以为这个角的一边:(2)在图②画一条直线,使得.20.(8分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)21.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.22.(10分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.实践操作:如图1,在Rt△ABC中,∠B=90°,BC=2AB=12,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.问题解决:(1)①当α=0°时,=;②当α=180°时,=.(2)试判断:当0°≤a<360°时,的大小有无变化?请仅就图2的情形给出证明.问题再探:(3)当△EDC旋转至A,D,E三点共线时,求得线段BD的长为.23.(10分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.(1)求A、B两点的坐标及二次函数解析式;(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.24.(10分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.25.(12分)(2016山东省聊城市)如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1.(1)求反比例函数的表达式;(2)将直线向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.26.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
参考答案一、选择题(每题4分,共48分)1、A【分析】证得△ADP∽△RBP,可得,由AD=BC,可得.【详解】∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.2、A【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线∴b=-2a>0∵抛物线与y轴的交点在x轴下方,∴c<-1,∴abc>0,所以①错误;∵,对称轴为直线∴故,②正确;∵对称轴x=1,∴当x=0,x=2时,y值相等,故当x=0时,y=c<0,∴当x=2时,y=,③正确;如图,作y=2,与二次函数有两个交点,故方程有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c>0,当x=0时,y=c<-1∴3a>1,故,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.3、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:rl=×2×6=12,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.4、A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【详解】设白球有x个,根据题意得:,解得:x=5,
即白球有5个,
故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5、A【分析】直接利用一元二次方程中各部分的名称分析得出答案.【详解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣1.故选:A.【点睛】此题主要考查了一元二次方程的一般形式,正确认识各部分是解题关键.6、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.7、B【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【详解】如图所示,过P作PD∥AB交AC于D或PE∥AC交AB于E,则△PCD∽△BCA或△BPE∽△BCA,此时0<PC<8;如图所示,过P作∠BPF=∠A交AB于F,则△BPF∽△BAC,此时0<PC<8;如图所示,过P作∠CPG=∠B交AC于G,则△CPG∽△CAB,此时,△CPG∽△CBA,当点G与点A重合时,CA1=CP×CB,即41=CP×8,∴CP=1,∴此时,0<CP≤1;综上所述,CP长的取值范围是0<CP≤1.故选B.【点睛】本题主要考查了相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.8、C【分析】利用一元二次方程的定义判断即可.含有一个未知数,并且未知数的最高次数是2次的整式方程是一元二次方程.【详解】解:A、x+=2不是整式方程,不符合题意;B、ax2+bx+c=0不一定是一元二次方程,不符合题意;C、方程整理得:x2﹣5x+6=0是一元二次方程,符合题意;D、2x2+y=1不是一元二次方程,不符合题意.故选:C.9、A【解析】试题分析:根据∠ABD的度数可得:弧AD的度数为110°,则弧BD的度数为70°,则∠BCD的度数为35°.考点:圆周角的性质10、B【解析】根据圆周角定理可得∠ADC=2∠ABC=140°,故选B.11、B【分析】根据题意可得x1<x2,且x1、x2同号,根据反比例函数的图象与性质可得y1>y2,即可求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而x1<x2,且x1、x2同号,所以y1>y2,即y1﹣y2>0,故选:B.【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.12、C【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【详解】解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=2,OB=OD,
∴OD=OC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选:C.【点睛】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.二、填空题(每题4分,共24分)13、1【分析】由弧长公式:计算.【详解】解:由题意得:圆的半径.故本题答案为:1.【点睛】本题考查了弧长公式.14、1.【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可.【详解】根据题意可得:B:4=4:2,解得b=1,故答案为:1.【点睛】本题主要考查了比例线段,解题本题的关键是理解两个数的比例中项,然后列出比例式进一步解答.15、【分析】根据特殊角度的三角函数值,,,代入数据计算即可.【详解】∵,,,∴原式=.【点睛】熟记特殊角度的三角函数值是解本题的关键.16、2【分析】先求出10户居民平均月使用塑料袋的数量,然后估计500户家庭每月一共使用塑料袋的数量即可.【详解】解:10户居民平均月使用塑料袋的数量为:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案为2.【点睛】本题考查统计思想,用样本平均数估计总体平均数,10户居民平均月使用塑料袋的数量是解答本题的关键.17、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.18、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.三、解答题(共78分)19、(1)见解析;(2)见解析.【分析】(1)连接CF,EF,得到△ECF为等边三角形,即可求解:(2)连接CF,BD,交点即为P点,再连接AP即可.【详解】或即为所求;直线即为所求.【点睛】此题主要考查四边形综合的复杂作图,解题的关键是熟知正方形、等边三角形的性质.20、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:123451﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2(2,1)﹣﹣﹣(2,3)(2,4)(2,5)3(3,1)(3,2)﹣﹣﹣(3,4)(3,5)4(4,1)(4,2)(4,3)﹣﹣﹣(4,5)5(5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.22、(1)①,②;(2)无变化,证明见解析;(2)6或.【分析】问题解决:(1)①根据三角形中位线定理可得:BD=CDBC=6,AE=CEAC=2,即可求出的值;②先求出BD,AE的长,即可求出的值;(2)证明△ECA∽△DCB,可得;问题再探:(2)分两种情况讨论,由矩形的判定和性质以及相似三角形的性质可求BD的长.【详解】问题解决:(1)①当α=0°时.∵BC=2AB=3,∴AB=6,∴AC6,∵点D、E分别是边BC、AC的中点,∴BD=CDBC=6,AE=CEAC=2,DEAB,∴.故答案为:;②如图1.,当α=180°时.∵将△EDC绕点C按顺时针方向旋转,∴CD=6,CE=2,∴AE=AC+CE=9,BD=BC+CD=18,∴.故答案为:.(2)如图2,,当0°≤α<260°时,的大小没有变化.证明如下:∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.问题再探:(2)分两种情况讨论:①如图2..∵AC=6,CD=6,CD⊥AD,∴AD3.∵AD=BC,AB=DC,∴四边形ABCD是平行四边形.∵∠B=90°,∴四边形ABCD是矩形,∴BD=AC=6②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P.∵AC=6,CD=6,CD⊥AD,∴AD3.在Rt△CDE中,DE==2,∴AE=AD﹣DE=3﹣2=9,由(2)可得:,∴BD.综上所述:BD=6或.故答案为:6或.【点睛】本题是几何变换综合题,考查了勾股定理,矩形的判定和性质,相似三角形判定和性质,正确作出辅助线,利用分类讨论思想解决问题是本题的关键.23、(1)A(﹣,0),B(,0);抛物线解析式y=x2+x﹣;(2)12;(3)(0,),(0,﹣)【分析】(1)在y=mx2+3mx﹣m中令y=0,解方程求得x的值即可求得A、B的坐标,继而根据已知求出点D的坐标,把点D坐标代入函数解析式y=mx2+3mx﹣m利用待定系数法求得m即可得函数解析式;(2)先求出直线AD解析式,再根据直线BE∥AD,求得直线BE解析式,继而可得点E坐标,如图2,作点P关于AE的对称点P',作点E关于x轴的对称点E',根据对称性可得PQ=P'Q,PE=EP'=P'E',从而有DQ+PQ+PE=DQ+P'Q+P'E',可知当D,Q,E'三点共线时,DQ+PQ+PE值最小,即DQ+PQ+PE最小值为DE',根据D、E'坐标即可求得答案;(3)分情况进行讨论即可得答案.【详解】(1)∵令y=0,∴0=mx2+3mx﹣m,∴x1=,x2=﹣,∴A(﹣,0),B(,0),∴顶点D的横坐标为﹣,∵直线y=﹣x﹣与x轴所成锐角为30°,且D,B关于y=﹣x﹣对称,∴∠DAB=60°,且D点横坐标为﹣,∴D(﹣,﹣3),∴﹣3=m﹣m﹣m,∴m=,∴抛物线解析式y=x2+x﹣;(2)∵A(﹣,0),D(﹣,﹣3),∴直线AD解析式y=﹣x﹣,∵直线BE∥AD,∴直线BE解析式y=﹣x+,∴﹣x﹣=﹣x+,∴x=,∴E(,﹣3),如图2,作点P关于AE的对称点P',作点E关于x轴的对称点E',根据对称性可得PQ=P'Q,PE=EP'=P'E',∴DQ+PQ+PE=DQ+P'Q+P'E',∴当D,Q,E'三点共线时,DQ+PQ+PE值最小,即DQ+PQ+PE最小值为DE',∵D(﹣,﹣3),E'(,3),∴DE'=12,∴DQ+PQ+PE最小值为12;(3)∵抛物线y=(x+)2﹣3图象向右平移个单位,再向上平移3个单位,∴平移后解析式y=x2,当x=3时,y=3,∴M(3,3),如图3若以AM为直角边,点M是直角顶点,在AM上方作等腰直角△AME,则∠EAM=45°,直线AE交y轴于F点,作MG⊥x轴,EH⊥MG,则△EHM≌△AMG,∵A(﹣,0),M(3,3),∴E(3﹣3,3+),∴直线AE解析式:y=x+,∴F(0,),若以AM为直角边,点M是直角顶点,在AM上方作等腰直角△AME,同理可得:F(0,﹣).【点睛】本题考查了待定系数法、轴对称的性质、抛物线的平移、线段和的最小值问题、全等三角形的判定与性质等,综合性较强,有一定的难度,准确添加辅助线、熟练应用相关知识是解题的关键.24、(1)(数字是偶数);(2)(数字相同)【分析】(1)利用概率公式求概率即可;(2)先列表,然后根据概率公式计算概率即可.【详解】解:(1)第一次摸出的小球共有4种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ospf协议书 实验报告
- 健身房会员卡协议书
- 2025新商业办公房预售买卖合同样本
- 2025灯光租赁标准合同书
- 2025物业服务委托合同范本借鉴
- 2025年短视频MCN机构入驻合同协议
- 2025年山东半岛低空经济「陆海联动」航空教育培训行业报告
- 2025年版代签合同授权委托书样本
- 2025温室用地租赁合同范本
- 2025铁路局劳动合同范本下载
- 2025年广西高考地理真题(解析版)
- 2025建筑施工企业安管人员考试(企业主要负责人A类)练习题及答案
- 2025年越南语专升本翻译专项试卷(含答案)
- 食品安全总监知识考试题及答案
- 工程项目咨询与竣工验收报告范例
- 中国广电福建地区2025秋招行业解决方案岗位专业追问清单及参考回答
- 椎管内硬脊膜外血肿护理
- 酒水商品购销合同范本
- 眼视光师考试试题及答案
- 2025至2030年中国吉林省建筑行业市场发展现状及投资前景展望报告
- 2024新国家基层糖尿病防治管理指南
评论
0/150
提交评论